B. Ljungberg, K. Bensalah, S. Canfield, S. Dabestani, F. Hofmann et al., Eau guidelines on renal cell carcinoma: 2014 update, European Urology, vol.67, issue.5, pp.913-924, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01260564

P. Shao, C. Chao, X. Meng, . Xiaobing, Z. Qiang et al., Laparoscopic partial nephrectomy with segmental renal artery clamping: technique and clinical outcomes, European Urology, vol.59, issue.7, pp.849-55, 2011.

R. Cuingnet, R. Prevost, D. Lesage, L. D. Cohen, B. Mory et al., Automatic detection and segmentation of kidneys in 3D CT images using random forests, Medical Image Computing and Computer-Assisted Intervention -MICCAI, pp.66-74, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00779698

G. Yang, G. Gu, J. Chen, Y. Liu, W. Tang et al., Automatic kidney segmentation in CT images based on multi-atlas image registration, In: Engineering in Medicine & Biology Society Conference, p.5538, 2014.

M. G. Linguraru, S. Wang, F. Shah, R. Gautam, J. Peterson et al., Automated noninvasive classification of renal cancer on multiphase CT, Medical Physics, vol.38, issue.10, pp.5738-5746, 2011.

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.4, pp.640-651, 2017.

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoderdecoder architecture for image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid scene parsing network, IEEE Conference on Computer Vision and Pattern Recognition, pp.6230-6239, 2017.

M. A. Hussain, A. Amir-khalili, G. Hamarneh, and R. Abugharbieh, Segmentation-free kidney localization and volume estimation using aggregated orthogonal decision CNNs, Medical Image Computing and Computer-Assisted Intervention, pp.612-620, 2017.

M. Havaei, A. Davy, D. Warde-farley, A. Biard, A. Courville et al., Brain tumor segmentation with deep neural networks, Medical Image Analysis, vol.35, pp.18-31, 2017.

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter et al., Dermatologist level classification of skin cancer with deep neural networks, Nature, vol.542, issue.7639, p.115, 2017.

R. Rouhi, M. Jafari, S. Kasaei, and P. Keshavarzian, Benign and malignant breast tumors classification based on region growing and cnn segmentation, Expert Systems with Applications An International Journal, vol.42, issue.3, pp.990-1002, 2015.

Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang et al., 3D deeply supervised network for automated segmentation of volumetric medical images, Medical Image Analysis, vol.41, pp.40-54, 2017.

K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane et al., Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Medical image analysis, vol.36, pp.61-78, 2017.

J. Rens, G. Zeng, and G. Zheng, Fully automatic segmentation of lumbar vertebrae from ct images using cascaded 3D fully convolutional networks, 2017.

Ç. Özgün, A. Abdulkadir, S. Lienkamp, T. Brox, and O. Ronneberger, 3D U-Net: learning dense volumetric segmentation from sparse annotation, International Conference on Medical Image Computing and ComputerAssisted Intervention-MICCAI, pp.424-432, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778, 2016.

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 2015.

P. Krähenbühl and V. Koltun, Efficient inference in fully connected CRFs with Gaussian edge potentials, Advances in Neural Information Processing Systems, vol.24, 2011.

, Pytorch: Tensors and dynamic neural networks in python with strong gpu acceleration