
A Distributed Framework for Low-Latency OpenVX

over the RDMA NoC of a Clustered Manycore

Julien Hascoët1,2, Benoı̂t Dupont de Dinechin1, Karol Desnos2, Jean-François Nezan2

1 Kalray, Montbonnot-Saint-Martin, France
2 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France

{jhascoet, benoit.dinechin}@kalray.eu, {kdesnos, jnezan}@insa-rennes.fr

Abstract—OpenVX is a standard proposed by the Khronos
group for cross-platform acceleration of computer vision and
deep learning applications. OpenVX abstracts the target proces-
sor architecture complexity and automates the implementation
of processing pipelines through high-level optimizations. While
highly efficient OpenVX implementations exist for shared mem-
ory multi-core processors, targeting OpenVX to clustered many-
core processors appears challenging. Indeed, such processors
comprise multiple compute units or clusters, each fitted with
an on-chip local memory shared by several cores.

This paper describes an efficient implementation of OpenVX
that targets clustered manycore processors. We propose a frame-
work that includes computation graph analysis, kernel fusion
techniques, RDMA-based tiling into local memories, optimization
passes, and a distributed execution runtime. This framework
is implemented and evaluated on the 2nd-generation Kalray
MPPA R© clustered manycore processor. Experimental results
show that super-linear speed-ups are obtained for multi-cluster
execution by leveraging the bandwidth of on-chip memories and
the capabilities of asynchronous RDMA engines.

Index Terms—OpenVX, Low power, RDMA, Low latency,
Tiling, Fusion, Prefetching, Memory wall, Fully automated

I. INTRODUCTION

Server and desktop systems are built from multi-core pro-

cessors that integrate up to a few tens of highly complex Cen-

tral Processing Units (CPUs) cores. In order to improve energy

efficiency while maintaining high computing performance,

new processor architectures are designed with larger numbers

of simpler cores [1], [2]. As the number of cores increases,

however, it becomes beneficial to cluster these cores into

compute units or clusters that become architecturally visible.

Cores co-located into the same cluster may synchronize faster,

may belong to the same coherency domain, and may share a

local on-chip memory. GPGPUs are classic examples of many-

core processors, whose compute units are called ’streaming

multiprocessors’, and where cores operate in SIMT (Single

Instruction Multiple Threads) mode.

Our focus is on manycore processors built from fully pro-

grammable cores that operate in MIMD (Multiple Instruction

Multiple Data) mode, and whose clusters include a RDMA

engine able to move data asynchronously between the various

on-chip and external memories. In particular, the Kalray

MPPA2 R©-256 processor implements a clustered manycore

architecture composed of 16 clusters of 16 cores each, inter-

connected with a Remote Direct Memory Access (RDMA)-

enabled Network-on-Chip (NoC). Efficient programming of

such manycore processors is challenging, as application soft-

ware must distribute processing on the clusters and use the

local memories as scratch-pad.

In the computer vision domain, open-source libraries like

OpenCV are used for the rapid prototyping of applications on

general purpose processors. With these libraries, application

processing is expressed as a sequence of function calls, each

implementing a black-box computation. This prevents classic

compilation frameworks to perform global restructuring and

high-level optimizations of the resulting applications. By con-

trast to OpenCV, the Khronos OpenVX standard [3] proposes

a graph-based approach for the structured design of computer

vision pipelines, where images flow as arcs between nodes,

and nodes correspond to the processing kernels. Among other

advantages, this approach enables implementations to expose

and optimize the application at the graph level.

This paper describes a new OpenVX implementation for

clustered manycore processors that performs high-level opti-

mizations at runtime. These optimizations operate in a dis-

tributed framework for concurrent computations and asyn-

chronous communications, with focus on low-latency execu-

tion of OpenVX applications. Optimizations include kernel

fusion, asynchronous data prefetching, inter-cluster data trans-

fers, multi-core scheduling, and memory allocation.

The organization is as follows: Section II presents back-

ground and related work regarding the OpenVX standard

and other programming models. Section III describes our

framework for clustered manycore architectures. Section IV

presents experimental results on a Kalray MPPA2 R©-256 pro-

cessor and discusses the strength and limitations of automatic

optimizations. Finally, Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Target Clustered Manycore Platform

The Kalray Massively Parallel Processor Array (MPPA) R©2-

256 “Bostan” processor integrates 256 VLIW processing cores

and 32 VLIW management cores, each implementing the same

ISA, on a single CMOS 28nm chip. It has been designed

for high energy efficiency and time predictability for critical

embedded applications [4]. Each of the 16 Compute Clusters

(CCs) is composed of 16 processing cores sharing a multi-

banked private local scratch-pad memory of 2MB. In addition,

two Input/Output Subsystems (IOSs) are provided, each with

two cache-coherent quad-cores implementing the same VLIW



ISA, sharing on-chip scratch-pad memory of 4MB, and con-

nected to a DDR3 memory controller. In standalone operation

of the processor, IOSs play the role of host multi-core CPUs

for offloading computation onto the CC matrix. These 16 CCs

and 2 IOSs are interconnected with a RDMA capable NoC.

RDMA provides direct memory access from a local memory to

another local memory, or between local memory and external

memory, without involving any of the processing cores. Design

and implementation of the RDMA over NoC library for the

MPPA R© processor are detailed in [5].

To the application programmer, the MPPA R© processor CC

matrix appears either as a single OpenCL [6] Compute Device

or as a collection of individual multi-cores (one per CC). When

used that way, the programmer has to instantiate a POSIX-

like process on each CCs, where a lightweight executive

implements a Pthread and OpenMP3 [7] multithreading run-

time environment. Our OpenVX framework is built on the

multiple multi-core view of the MPPA R© processor.

B. The Khronos OpenVX Standard

The OpenVX standard [3] is a graph-based computing

Application Programming Interface (API) proposed by the

Khronos group for developing computer vision and deep

learning applications on embedded platforms. OpenVX is not

only designed as a host CPU acceleration model by a device

like OpenCL but is also reminiscent of a dataflow Model

of Computation (MoC). Dataflow MoCs are architecture-

agnostic, highly valuable for exposing high-level optimization

opportunities and enabling automatic deployment of appli-

cations on a wide variety of embedded platforms [8]. The

OpenVX MoC appears a Single-Rate (SR) specialization of the

Synchronous Dataflow (SDF) MoC [9], [8] where production

and consumption rates of the graph nodes (actors) are equal.

So a specific strength of OpenVX lies in exposing the graph

structure of the entire processing pipeline, enabling imple-

mentations to perform high-level optimization and allowing

vendors to get the most out of their machines.

An OpenVX application is given a context describing the

accelerator device where the computation is to be offloaded.

The OpenVX Graph is composed of vertices and edges. The

vertices are OpenVX Nodes, which can be selected in a list of

standard kernels [3]. The edges correspond to OpenVX buffers

(Images, LUTs, Arrays, Pyramids, etc.) and link the vertices

which produce and consume data. Two types of buffers exist:

the user buffers, allocated and accessible from the memory

space of the OpenVX host application; and the virtual buffers,

that contain data exchanged between the vertices of the graph.

Virtual buffers are not to be accessed by the host application

and can be optimized away when fusing kernels.

C. OpenVX Implementations & Optimizations

An implementation of the OpenVX standard is proposed

by virtually all IP vendors and chip producers that targets

computer vision applications. OpenVX implementations also

available from Graphical Processing Units (GPUs) and FPGA

SoC vendors, where they share the offloading foundations of

CUDA R© or OpenCL. The Nvidia R© VisionWorks framework

presented in [10] implements OpenVX using CUDA for GPU

offloading. The Advanced Micro Devices (AMD) open-source

framework described in [11] uses either OpenCL for GPU

offloading or the host CPU for computations. Both frameworks

implement graph-based optimizations presented in [12] and

target GPU-based accelerators or the host processor.

The ADRENALINE framework presented in [13] [14] fea-

tures a series of optimization techniques including kernel

fusion, overlap tiling by recomputing halo regions (ghost

regions [15]), and double buffering for overlapping compu-

tation and communications. Seminal OpenVX optimizations

techniques are described in [12], while the basics of efficient

implementations on parallel machines are exposed in [16]:

data prefetching, SIMD execution, and multiple levels of

tiling. ADRENALINE provides a virtual prototyping platform

currently implementing a single cluster and a host CPU. Their

runtime is built on OpenCL 1.1 [17] with an extension to effi-

ciently exploit the on-chip memory, avoiding round trips to the

main memory whenever possible. By comparison, our work

focuses on fully automating OpenVX graph optimizations

and executing at low latency in a standalone mode (without

external CPU). The standalone mode allows our framework to

compile on-the-fly, with a call to vxVerifyGraph at runtime,

the OpenVX graph onto the target processor if a configuration

parameter of the OpenVX application changes dynamically.

We instantiate a multi-core host CPU on one IOS, accelerated

by up to 16 compute clusters, and we use asynchronous inter-

cluster RDMA transfers to exchange halo regions.

While OpenCL can also be used for deploying kernels onto

the compute matrix of the MPPA R© processor, this standard

does not support local memory sharing between kernels.

Indeed, all __global data are committed back to the main

memory, and __local data does not persist between kernels.

This makes kernel fusion optimization impossible, with the

result of global bandwidth becoming the main performance

bottleneck. Vendor-specific extensions could be used to reuse

memory between OpenCL kernels as in [14], but these are non-

standard and not part of the Kalray OpenCL offer. Moreover,

the Kalray OpenCL host runtime requires Linux which cannot

be used for efficient, soft real-time systems because of process

scheduling jitter and system call overhead.

III. CONTRIBUTIONS

Our contribution is a framework for running OpenVX

applications on stand-alone clustered manycore processors

based on a distributed runtime execution environment. Starting

from [18], which targets Load/Store CPU+GPU architectures

with shared memory, we adapt and automate optimizations

for both Load/Store (synchronous, intra-cluster) and RDMA

(asynchronous, inter-cluster) types of memory accesses.

A. Compilation Workflow

The workflow specifies the automatic steps performed dur-

ing the OpenVX graph on-the-fly compilation. The workflow

is executed onto the embedded host; thus, graph recompilation



can be done at runtime if external parameters change. As

shown in Figure 1, the workflow inputs the OpenVX applica-

tion and produces computation commands for an accelerator.

IR Graph

Building
Scheduling

Kernel

Fusion

Memory

Allocation

Command

Generation

Fig. 1: OpenVX Verify Graph Workflow - vxVerifyGraph [3]

a) IR Graph Building provides the internal Intermediate

Representation (IR), a Single-Rate (SR) Directed Acyclic

Graph (DAG) on which the next passes of the compilation

workflow operate. The graph builder takes user buffers which

are OpenVX objects, searches for adjacent nodes using a

Depth-First Search (DFS) and propagates application proper-

ties to buffers and nodes, such as image sizes and configuration

parameters of OpenVX kernels. Several errors are detected

and dealt with during the graph building process: unconnected

buffers or nodes, cycles, multiple buffer writers, and the

absence of input or output buffers for the OpenVX application.

When errors are detected, the graph building results in failure

giving the user the list of implicated nodes or buffers.

b) Scheduling is based on a topological sort of the SR-

Directed Acyclic Graph (DAG) presented in [19]. It is per-

formed to enforce the graph dependencies for kernel execution

and has a complexity in O(n).
c) Kernel Fusion is the key optimization that reduces the

main memory bandwidth requirements, by running adjacent

kernels on the same on-chip memory. Kernel fusion opportuni-

ties are identified by a simple constraint satisfaction algorithm

that ensures memory allocation feasibility. The schedule is

updated after each kernel fusion.

d) Memory Allocation pass is performed by a distributed

memory allocator operating on the final schedule. As explained

in III-E, virtual buffers are allocated to either the main memory

or the array of symmetric scratch-pad memories.

e) Command Generation performs the computation of argu-

ments for the RDMA-based tiling engine. The commands are

saved in lookup tables. The runtime of the RDMA-based tiling

engine running the compute clusters is presented in III-C. The

basic tiling principle is to split a buffer into pieces such as

slices or tiles and to distribute them onto computing resources.

Once commands are generated, the vxProcessGraph consists

in sending commands to the clusters explained in III-B. The

commands are sent asynchronously but the execution is in

schedule order across the matrix of compute clusters.

B. Graph Execution using an Efficient Offloading Engine

The deployment of computations from a host to one or

several accelerators (compute clusters) is not a trivial task.

The OpenVX application runs on the host multi-core CPU and

invokes an acceleration API. The OpenVX context references

the number of compute clusters in range [0, 15] and the

number of processors in range [0, 15] inside each compute

cluster of an MPPA R© processor. Each OpenVX node is

distributed on all available compute clusters (flat distribution).

This is achieved by operating a low-level kernel offloading

Cluster 0

Host

Multi-core

Main

Memory

Cluster NCluster 1

Flow

Control
Comple-

tion

Job

Queues

RDMA

NoC

...
OpenMP

Fork

Join

Fork Fork

JoinJoin

Fork

Join

Fork Fork

JoinJoin

Fig. 2: Execution Runtime Architecture

engine in a lightweight multi-threaded runtime onto the host

CPU. The offloading engine enables the deployment of self-

synchronizing computations with efficient usage of the scratch-

pad memories on the compute clusters. Figure 2 shows the

offloading engine architecture where the OpenVX distributed

framework is built. The parallelization relies on OpenMP3 #

pragma omp parallel for work sharing between cores

inside a compute cluster and uses the RDMA NoC API [5] to

perform inter-cluster data transfers and main memory accesses.

All local memory accesses (intra-cluster) are done by Load-

Store, and all remote memory accesses (inter-clusters) use

RDMA for memory buffers and posted remote atomic opera-

tions for synchronizations. A local memory access is a low-

latency memory transaction between a core and the internal

cluster scratch-pad memory (10-cycles latency for Load/Store),

whereas a remote memory access uses the RDMA protocol

over the NoC to access another compute cluster memory or

an off-chip memory (1200-cycles latency for RDMA Put/Get).

The design of our offloading engine is inspired by the GCC

OpenACC [20] runtime back-end. Its implementation also

heavily relies on the asynchronous one-sided communications

and synchronization API over the NoC of the Kalray MPPA R©

processor, which provides high-throughput and low-latency

RDMA, remote atomics and remote queue operations [5]. The

distributed multi-cluster offloading engine provides the follow-

ing set of features that are used by the generated compute

commands of the OpenVX graph compilation workflow:

• Multi-cluster platform topology creation

• Load or unload code stream to the compute cluster(s)

• Scratch-pad buffer allocation associated to an identifier

• Execute kernel with arguments (name and arguments)

• Multi-cluster synchronization, synchronous or asyn-

chronous collective

• Barrier of the computation pipeline, providing completion

of outstanding kernels to the targeted clusters

All primitives are executed by the host multi-core CPU,

asynchronously and atomically to avoid stalls and prevent data

race respectively. However, initiated primitives are processed

in the execution order on the compute cluster side. Thus,

pipeline barriers are provided to ensure the completion of all

outstanding primitives that were initiated to the targeted com-

pute cluster(s). In this way, transactions are always pipelined

for execution efficiency with regards to the host. Finally,

the offloading engine provides implicit software flow-control

mechanisms to prevent data corruption when the multi-cluster



system suffers from congestion. As a result, at 500 MHz, the

measured Input/Output Operation per Second (IOPS) from the

host point of view is 731.3 KIOPS, meaning an asynchronous

request to a compute cluster takes 681 cycles on average.

C. Runtime Optimization RDMA-based Tiling & Fusion

The RDMA-based tiler operates at runtime (graph execu-

tion) inside each compute cluster concurrently, distributing

the execution of each OpenVX node across the entire

matrix of compute clusters. This technique is essential

to achieve low-latency execution and contrasts with classic

dataflow graph execution where actors map to clusters [2],

[21]. Algorithm 1 receives commands through the job queues

as seen in Figure 2 when the host application calls vxProcess-

Graph. Command arguments are the input and output images,

tile geometries, halo geometries, the N-buffering configuration

to absorb main memory latency, the start compute offset in

main images for each compute cluster and the number of

compute clusters that will execute the kernel concurrently.

First, the distributed tiler either retrieves input tiles from the

main memory using N-buffering or sets local multidimensional

input pointers to previous local output buffers of a previously

executed kernel when it is fused with the current one. Second,

the master thread on the compute cluster calls the compute ker-

nel which performs intra-cluster parallelization with pragma

omp directives. Third, the output is either committed back to

the main memory for OpenVX user buffers or remains locally,

if the next kernel is fused with the current one. When the

next kernel is fused, depending on kernel fusion patterns, halo

exchanges are initiated to adjacent compute clusters to satisfy

inter-cluster data dependencies. Finally, memory consistency

operations are initiated to memories that have outstanding

writes before the multi-cluster synchronization.

Figure 3 shows an example of fusion in a 2D stencil

computation using several clusters. A typical use case would

be an edge detector followed by morphological operators. The

black arrows are strided inter-cluster asynchronous RDMA

transfers, also shown line 27 of Algorithm 1. Red arrows show

global main memory spaced [5] transfers to the distributed

array of scratch-pad memories. When executing a distributed

fused kernel, each compute cluster is accommodated with

tiles that are automatically reused from one kernel to the

other. Therefore, the N-buffering N variable of Algorithm 1

is always set to 1 when fusing to maximize the on-chip mem-

Halo

Region

Kernel 1

Kernel 2

Fused

C0

C0

C2

C2

C1

C3

C3

C1

Main

Main Memory Transfer

Halo Exchange

Memory

WriteRead

Fig. 3: Automated Multi-clusters Tiling with Fusion

Algorithm 1 An Automatic Distributed RDMA-based Overlap

Tiler Concurrently Operating onto Multiple Compute Clusters.

1: Input: InImg, Width, Height, NbTotalTiles, N, TileWidth,

TileHeight, HxIn/Out, HyIn/Out, NbTileStartOff, NbTiles

2: Output: OutImg

3: /* Set multidimensional pointers in scratch-pad memory

*/

4: Set InTiles[N][TileHeight+2*HyIn][TileWidth+2*HxIn]

5: Set OutTiles[N][TileHeight+2*HyOut][TileWidth+2*HxOut]

6: for i := 0 to N-1 step 1 /* Warm up the pipeline */ do

7: InTilesEvent[i] ← Asynchronous Get Stride-to-Dense

from (InImg+NbTileStartOff+i) to InTiles[i]

8: end for

9: for i := N to NbTiles+N step 1 /*Pipeline Loop */ do

10: ProcIdx := (i-N)%N /* Compute Buffer Index */

11: FetchIdx := i%N /* Prefetch Buffer Index */

12: /* Wait for DMA Transactions Completions */

13: Wait Get InTilesEvent[ProcIdx]

14: /* Only one wait if in-place computation */

15: Wait Put OutTilesEvent[ProcIdx]

16: /* Compute Tile i-N in Parallel in the Node */

17: OutTile[ProcIdx] := Kernel(InTiles[ProcIdx)])

18: if OutImg is local then

19: Async. Puts of halo regions to adjacent compute

clusters for fused kernels dependencies

20: else

21: if i < NbTiles+N then

22: OutTiles[ProcIdx] ← Async. Put Dense-to-

Stride to (OutImg+NbTileStartOff+i) from

OutTiles[ProcIdx] /* Write to Main Memory */

23: end if

24: end if

25: /* Prefetch Tile i from Main Memory */

26: if i < NbTiles then

27: InTilesEvent[FetchIdx] ← Async. Get Stride-

to-Dense from (InImg+NbTileStartOff+i) to

InTiles[FetchIdx]

28: end if

29: end for

30: Async. Fence /* Memory Consistency, Mandatory for

Global Read-After-Write Dependencies */

31: Synchronize NbNodes Clusters /* Ordered with Fences */

ory usage, minimize data movement and save main memory

bandwidth.

As explained in [22], reducing latency by software and

hardware prefetching is a key to performance. Memory ac-

cesses are often the bottleneck in high-performance comput-

ing. Algorithm 1 has been designed to overcome the problem

of hiding the external memory system access latency and

exploiting inter-cluster RDMA data transfers to avoid the

external memory bandwidth bottleneck. The RDMA-based

tiler can be used straight out of the box by other architectures

supporting (asynchronous) one-sided communications such as

OpenCL async_work_group_copy(), MPI-3 one-sided



operations, or even the low-level onto the eDirect Memory

Access (DMA) feature of the TI Keystone II.

D. Automatic Kernel Fusion Optimizations at Compile Time

The kernel fusion optimization consists of grouping two

adjacent kernels together to avoid temporary buffers being

copied to the external memory. Kernel fusion operates at multi-

cluster level as each kernel is distributed on the whole compute

cluster matrix to achieve low latency. It is inspired by the

Pairwise Grouping of Adjacent Nodes algorithm, proposed

in [9]. However, our kernel fusion is different, as each vertex

of the SR-DAG is distributed on all available compute clus-

ters, making data dependency between fused kernels a multi-

dimensional problem as shown in Figure 3. Fusion decisions

are based on the following constraints: the type of kernel

pattern to fuse, the scratch-pad memory consumption and the

type of input and/or output buffers have to be virtual. The

fusion optimization pass, which has a complexity of O(n),
takes the main graph schedule as an input and produces a

new schedule that represents the new fused kernels. This new

schedule is then placed in the main graph schedule until

all fusion opportunities are applied to the application graph.

The scheduling policy consists of executing fused kernels in

depth first. The supported patterns of kernel fusion are any

combinations of point operator kernels using overlap tiling or

not. The fusion optimization avoids recomputing halo regions

and removes useless memory copies for the management of

halo regions. However, it is involved regarding inter-cluster

data transfers and the memory allocation of input and output

tiles, as buffers need to be padded on the borders for halo

exchange (See border of distributed tiles in Figure 3).

E. Distributed Static Memory Allocation at Compile Time

The distributed memory allocator manages the memory

consumed by the virtual buffers of the OpenVX application.

User buffers are already allocated at object creation. The

distributed memory allocation operates after the scheduling

and the kernel fusion pass. The allocator has two memory

pools which are the array of symmetric scratch-pad memories

and the main memory. The process of memory allocation is

mainly influenced by the graph schedule through the lifetime

of virtual objects, the kernel fusion decisions, the kernel

dependency patterns, spills in the main memory for user

buffers and also the N-buffering and tiling configurations

parameters usually depending on image sizes. By default, the

runtime automatically spills onto the main memory during the

computation if there is not enough on-chip memory.

The RDMA-based tiler, described in Algorithm 1, is in

charge of spilling and tiling images that do not fit into the

available on-chip scratch-pad memories. Inside each com-

pute cluster, a memory buffer of 1.4 MBytes is allocated

at OpenVX context creation. This memory buffer size is

configured in the OpenVX platform’s specific files of the

framework itself but is easily tunable to target any RDMA-

enabled clustered manycores. This scratch-pad memory buffer

accommodates temporary multidimensional sub-buffers that

are allocated by a first-fit memory allocator giving buffer

offsets in the scratch-pads. The first-fit algorithm takes buffers

related to vertices in their schedule list order and recycles the

memory once their live range has ended. On average, 4 sub-

buffers are allocated in the scratch-pads before being recycled.

Finally, the memory allocation is guaranteed to succeed as the

kernel fusion optimization pass is aware of the available size

remaining in the scratch-pads when fusing kernels. Indeed,

when the kernel fusion takes too much memory, the fusing

optimization pass chooses the RDMA-based tiler to spill

on the main memory and to split the computation to make

it fits automatically in the scratch-pad memories, thanks to

Algorithm 1.

IV. RESULTS & DISCUSSIONS

Optimizations performed by the framework are fully au-

tomated without user intervention. This section shows the

impact of automatic optimization passes regarding fusion and

prefetching on the execution latency. The graph verification

and scheduling were done offline during our benchmarking.

The entire distributed framework (workflow, runtime, and

kernels) has been implemented in standard C99 for efficient

execution in embedded systems, and without any complex

library dependency but the C library.

A. Performances Analysis

We use single-channel images (VX DF IMAGE U8) for

benchmarking with image sizes corresponding to VGA (480p)

and full HD (1080p). Strong scaling is shown when varying

the number of compute clusters, and the number of Processing

Elements (PEs) is set to 16 within each compute cluster.

The operating chip frequency is 500 MHz using a single

DDR3 channel running at 1333 MHz. We use point operator

kernels using tiling or overlap tiling techniques with either

halo regions inter-cluster data transfers or spilling, depending

onto the level of optimization.

1) Benefits of asynchronous RDMA prefetching: Figure 4

compares the execution latency of a single kernel using

synchronous strided-to-dense RDMA main memory accesses

compared to asynchronous accesses implementing N-buffering

(see bench N BUFF results). We found that asynchronous

RDMA prefetch is a must-have for performance, as long as

the main memory is not the bottleneck. Quasi-linear speedups

can be seen up to 8 clusters before becoming IO bound.

2) Automatic Kernel Fusion: As seen in Figure 5 for HD

images with the edge detect pipeline (Median, Sharr and

Magnitude pipeline), the fusion is automatically enabled when

10 computes clusters are used, eliminating temporary buffers

to go back to the main memory, thus providing an extra

speedup of 25 % in this use case compared to the spilling N-

buffering version. With 10 compute clusters, the whole data

set fits the sum of all available scratch-pad memories making

the fusion optimization possible (Figure 3). Similar speedups

are also noticed for other use cases for both image resolutions.



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1  2  3  4  5  6  7  8

F
ra

m
e
 p

e
r 

S
e
c
o
n
d
 (

F
P

S
)

Number of Clusters (16-core per Cluster)

Tiling Engine Performance on 1080p Images - Batch 1

copy
conv3x3

threshold
dilate

or
copy_N_BUF

conv3x3_N_BUF
threshold_N_BUF

dilate_N_BUF
or_N_BUF

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1  2  3  4  5  6  7  8

F
ra

m
e
 p

e
r 

S
e
c
o
n
d
 (

F
P

S
)

Number of Clusters (16-core per Cluster)

Tiling Engine Performance on 480p Images - Batch 1

copy
conv3x3

threshold
dilate

or
copy_N_BUF

conv3x3_N_BUF
threshold_N_BUF

dilate_N_BUF
or_N_BUF

Fig. 4: Automatic Tiling Engine Performance. Batch 1: Latency = Throughput.

Simple Tiling vs Tiling with N-Buffering (N BUF = N-Buffering = Prefetch).

 0

 50

 100

 150

 200

 250

 300

 2  4  6  8  10  12  14  16

F
ra

m
e

 p
e

r 
S

e
c
o

n
d

 (
F

P
S

)

Number of Clusters (16-core per Cluster)

Fused Kernel Pipeline Performances on 1080p Images - Batch 1

edge_detect_pipeline_N_BUF
filtering_pipeline_N_BUF

box_closing_pipeline_N_BUF
edge_detect_pipeline_FUSION

filtering_pipeline_FUSION
box_closing_pipeline_FUSION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2  4  6  8  10  12  14  16

F
ra

m
e

 p
e

r 
S

e
c
o

n
d

 (
F

P
S

)

Number of Clusters (16-core per Cluster)

Fused Kernel Pipeline Performances on 480p Images - Batch 1

edge_detect_pipeline_N_BUF
filtering_pipeline_N_BUF

box_closing_pipeline_N_BUF
edge_detect_pipeline_FUSION

filtering_pipeline_FUSION
box_closing_pipeline_FUSION

Fig. 5: Automatic RDMA-based Kernel Fusion Performance. Batch 1: Latency = Throughput.

Tiling with N-Buffering (N BUF = N-Buffering = Prefetch) vs Kernel Fusing (FUSION).

3) Super-linear Speedup at Multi-Cluster Level: In the

edge detection pipeline of Figure 5, super-linear speedups

are observed. On full HD images (1080p), 1 compute cluster

provides 4.62 frames per second (FPS) and the 16-cluster

version with kernel fusions, asynchronous strided inter-cluster

halo regions exchange provides 78.07 FPS, meaning a speedup

of 16.9. Super-linear speedups are usually misunderstood as

they contradict the classical theoretical speedup law’s. On

complex memory hierarchy processors, super-linear speedups

can be achieved by optimizing multiple levels of memory

access patterns in the memory hierarchy regarding the al-

gorithm. Several parameters need to be taken into account,

such as memory access locality (shared cache or scratch-pad

usage), multiple levels of tiling geometries and asynchronous

prefeching mechanisms. On the Kalray MPPA R©2-256 proces-

sor, such speedup is obtained thanks to the exploitation of the

on-chip scratch-pad memories, and the use of asynchronous

(strided) inter-cluster data transfers which eliminate main

memory access stalls. The memory bandwidth wall needs to

be avoided to fully exploit the processing capabilities of low-

power massively parallel architectures [16]. Other use cases

filtering pipeline (Sobel, Magnitude, Erode & Dilate) and

box closing pipeline (Conv3x3, Erode & Threshold) show

both speedups of 15.1 on full HD images.

V. CONCLUSION & FUTURE WORK

We describe a distributed framework for the low-latency

implementation of the OpenVX computer vision standard on

a clustered manycore processor operating in stand-alone mode.

The main bottlenecks for the performance of applications

are the limited external memory bandwidth and the long

external memory access latencies. Our framework addresses

both bottlenecks by exploiting the on-chip local memories as

scratch-pad and by operating RDMA engines. Automated op-

timization techniques include kernel fusion, kernel execution

tiling, and N-buffering of external memory transfers. Results

measured on a silicon product show super-linear speedups at

the multi-cluster level, demonstrating that the processor is well

exploited. Future work will generalize the concept of RDMA-

based time skewing for multidimensional problems as in [23]

for cache-based machines, allowing kernel fusion optimiza-

tion, independently of the available on-chip memories.



REFERENCES

[1] A. Olofsson, “Epiphany-v: A 1024 processor 64-bit RISC system-on-
chip,” CoRR, vol. abs/1610.01832, 2016.

[2] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss
et al., “A clustered manycore processor architecture for embedded
and accelerated applications,” in High Performance Extreme Computing

Conference (HPEC), 2013 IEEE. IEEE, 2013, pp. 1–6.

[3] K. V. W. Group et al., “The openvx specification
v1. 1,” Web: https://www. khronos. org/registry/Open-

VX/specs/1.1/OpenVX Specification 1 1. pdf, 2017.

[4] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. de Dinechin, “The
shift to multicores in real-time and safety-critical systems,” in 2015

International Conference on Hardware/Software Codesign and System

Synthesis, CODES+ISSS 2015, Amsterdam, Netherlands, October 4-9,

2015, 2015, pp. 220–229.

[5] J. Hascoët, B. D. de Dinechin, P. G. de Massas, and M. Q. Ho,
“Asynchronous one-sided communications and synchronizations for a
clustered manycore processor,” in Proceedings of the 15th IEEE/ACM

Symposium on Embedded Systems for Real-Time Multimedia. ACM,
2017, pp. 51–60.

[6] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science

& engineering, vol. 12, no. 3, p. 66, 2010.

[7] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE,
vol. 5, no. 1, pp. 46–55, 1998.

[8] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transactions on

computers, vol. 100, no. 1, pp. 24–35, 1987.

[9] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of em-
bedded software from synchronous dataflow specifications,” Journal of

VLSI signal processing systems for signal, image and video technology,
vol. 21, no. 2, pp. 151–166, 1999.

[10] F. Brill and E. Albuz, “Nvidia visionworks toolkit,” in GPU Technology

Conference, 2014.

[11] R. Giduthuri and K. Pulli, “Openvx: a framework for accelerating
computer vision,” in SIGGRAPH ASIA 2016 Courses. ACM, 2016,
p. 14.

[12] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill,
“Addressing system-level optimization with openvx graphs,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, 2014, pp. 644–649.

[13] G. Tagliavini, G. Haugou, and L. Benini, “Optimizing memory band-
width in openvx graph execution on embedded many-core accelerators,”
in Design and Architectures for Signal and Image Processing (DASIP),

2014 Conference on. IEEE, 2014, pp. 1–8.

[14] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Adrenaline: an
openvx environment to optimize embedded vision applications on many-
core accelerators,” in Embedded Multicore/Many-core Systems-on-Chip

(MCSoC), 2015 IEEE 9th International Symposium on. IEEE, 2015,
pp. 289–296.

[15] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proceedings of the

2010 Workshop on Parallel Programming Patterns. ACM, 2010, p. 4.

[16] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications

of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[17] K. O. W. Group et al., “The opencl specification version 1.1,”
http://www. khronos. org/registry/cl/specs/opencl-1.1. pdf, 2011.

[18] M. Wahib and N. Maruyama, “Scalable kernel fusion for memory-bound
gpu applications,” in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis. IEEE
Press, 2014, pp. 191–202.

[19] D. J. King and J. Launchbury, “Structuring depth-first search algorithms
in haskell,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages. ACM, 1995, pp.
344–354.

[20] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openaccfirst
experiences with real-world applications,” in European Conference on

Parallel Processing. Springer, 2012, pp. 859–870.

[21] L. Cudennec, P. Dubrulle, F. Galea, T. Goubier, and R. Sirdey, “Gen-
erating code and memory buffers to reorganize data on many-core

architectures,” in Procedia Computer Science, vol. 29, 2014, pp. 1123–
1133.

[22] S. W. Williams, A. Waterman, and A. Patterson, “Roofline: an insightful
visual performance model for floating-point program and multicore
architecture,” Technical report No. UCB/EECS-2008-134. https://www2.
eecs. berkeley. edu/Pubs/TechRpts/2008/EECS-2008-134. pdf, Tech.
Rep.

[23] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel, “Cache accurate
time skewing in iterative stencil computations,” in Parallel Processing

(ICPP), 2011 International Conference on. IEEE, 2011, pp. 571–581.


