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28 ABSTRACT

29 Atmospheric water vapor binding to soils is a key process driving water availability in unsaturated terrestrial 

30 environments. Using a representative hydrophilic iron oxyhydroxide, this study highlights key mechanisms 

31 through which water vapor (i) adsorbs and (ii) condenses at mineral surfaces coated with Leonardite humic 

32 acid (LHA). Microgravimetry and vibrational spectroscopy showed that liquid-like water forms in the three-

33 dimensional array of mineral-bound LHA when present at total C/Fe ratios well exceeding ~240 mg C per g 

34 Fe. Below these loadings, minerals become even less hydrophilic than in the absence of LHA. This lowering 

35 in hydrophilicity is caused by the complexation of LHA water-binding sites to mineral surfaces, and possibly 

36 by conformational changes in LHA structure removing available condensation environments for water. An 

37 empirical relationship predicting the dependence of water adsorption densities on LHA loadings was 

38 developed from these results. Together with the molecular-level description provided in this work, this 

39 relationship should guide efforts in predicting water availability, and thereby occurrences of water-driven 

40 geochemical processes in terrestrial environments. 
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56 1. INTRODUCTION

57 Soil hydrophobicity is a key parameter that describes the extent to which water-based geochemical 

58 reactions can proceed, and can be used in environmental monitoring and soil quality assessment.1 This concept 

59 is a manifestation of the ability to which water vapor flowing through unsaturated soils (e.g. vadose zones) 

60 can form thin water films and droplets at and between mineral grains. Knowledge of the propensity of 

61 formation of these aqueous environments is consequently essential for predicting water availability, as well 

62 as geochemical aqueous reactions taking place within the microscopic solvation environments of water films 

63 and droplets. 

64

65 Understanding the fate of water binding to soils also requires knowledge of the intervening roles of natural 

66 organic matter (NOM). Of common occurrence in soils,2–4 NOM strongly reacts with mineral surfaces via 

67 chemical and/or physical adsorption reactions involving their hydrophilic functional groups (e.g. carboxylates, 

68 phenolates, amines), as well as by van der Waals hydrophobic interactions, and cation bridging.5–9 These 

69 organic coatings have a strong propensity to alter the hydrophilicity of mineral surfaces, the extent to which 

70 could be determined by the type and concentration of functional groups exposed at the mineral-organic/water 

71 vapor interface. Mineral-bound NOM can also alter surface properties of minerals,5 and have direct 

72 consequences on the mobility and fate of other contaminants, such as organic contaminants and heavy 

73 metals,10–14 through an interconnected network of water films/droplets localized on organic-coated mineral 

74 grains.

75

76 Although the concept of soil mineral hydrophobicity is well recognized and its influence on organic 

77 compound transport studied,1,11,15 its underlying mechanisms remain misunderstood. Still, strong correlations 

78 between soil hydrophobicity and soil organic matter16 or mineral-sorbed humic substances have been 

79 identified.15 Building upon our recent work on water vapor binding on minerals17–22 and the thermochemical 

80 stability of NOM mineral coatings,20 this work uses microgravimetry and vibrational spectroscopy to explain 

81 and predict water vapor binding to mineral-NOM mixtures. This was achieved by focusing on a model system 

82 consisting of Leonardite humic acid (LHA), a representative hydrophilic NOM, and goethite (α-FeOOH), a 

83 nanosized mineral with key roles in NOM and contaminant mobility in terrestrial and aquatic environments.23–

84 26
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85

86 2. MATERIALS AND METHODS

87 2.1. Materials

88 Goethite was synthesized by hydrothermal conversion of a freshly precipitated ferric oxyhydroxide at 60 

89 °C for 72 h.27,28 The starting material was made by drop-wise (1 mL/min) addition of 500 mL of a 0.5 M ferric 

90 nitrate solution (Fe(NO3)3·9H2O) to a continuously stirred 400 mL of 2.5 M sodium hydroxide solution in a 

91 N2(g) atmosphere. The resulting goethite was dialyzed (Spectra/Por membrane 2) against ultrapure water. The 

92 water was changed every day until its conductivity was lower than 1 µS/cm. The suspensions were stored in 

93 polypropylene containers at 4 °C for further use. Goethite purity was confirmed by X-ray diffraction (XRD) 

94 with a PANalytical X’Pert Pro X-ray diffractometer with Cu Ka radiation (c = 1.5406 Å) at 2θ range=10–65o 

95 (Figure S1).The B.E.T. specific surface area of the synthetic goethite (89.6 m2/g) was determined on a 

96 Micromeritics AutoPore IV 9500 surface area analyzer, and was calculated from 90-point 

97 adsorption/desorption N2(g) isotherms before degassing overnight at 105°C under a stream of dry N2(g).

98

99 Leonardite Humic Acid Standard (1S104H) was purchased from the International Humic Substance 

100 Society. A LHA stock solution (2 g/ L, 1276 mg C/L) was prepared by dissolving 2 g LHA in 100 mL of 1 M 

101 NaOH, then diluted to 1 L with ultrapure water.

102

103 2.2 NOM batch adsorption experiments

104 All NOM adsorption experiments were conducted in the absence of background electrolyte ions, and 

105 under an atmosphere of humidified N2(g). This minimized any competitive adsorption reactions that would 

106 occur under dry conditions.

107

108 A 320 µL aliquot of a goethite (24.80 g/L, specific surface area: 89.6 m2/g) aqueous suspension was mixed 

109 with 19.6 mL diluted LHA solutions (1.276 to 1276 mg C/L) in 50 mL polyethylene centrifuge tubes to achieve 

110 C/Fe (w/w) ratios in the 0.005−5 range. The suspensions were then adjusted to pH 5.0 with a pH meter by 

111 addition of small volumes of 1.0 M HCl or NaOH and equilibrated on an end-to-end rotator at 25 ± 1 °C for 

112 48 h. Next, the suspension was centrifuged at ~2000 g for 15 min, the supernatants were filtered (0.2 μm) and 
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113 the final soluble C concentrations were analyzed using a TOC analyzer (Shimadzu TOC-VCSH). The 

114 centrifuged wet pastes were analyzed by FTIR as described in Section 2.3.

115

116 2.3 Dynamic Vapor Sorption 

117 The Dynamic Vapor Sorption (DVS) technique was used to trigger water vapor binding on initially dry 

118 LHA-goethite assemblages. Water binding was monitored in two sets of independent experiments using (1) 

119 Fourier Transform InfraRed (FTIR) spectroscopy, and (2) gravimetry by Quartz Crystal Microbalance (QCM).

120

121 For both experiments, water vapor was generated by mixing humid N2(g) and dry N2(g) in different 

122 proportions using mass flow controllers (MKS, 179A). The total flow rate was always 200 standard cubic 

123 centimeters per minute (sccm), and water vapor pressures were continuously measured using a Non 

124 Dispersible InfraRed device (LI-7000, Licor Inc). Preliminary FTIR and QCM experiments demonstrated that 

125 a 30 min equilibration period under a constant water vapor pressure was well sufficient to achieve equilibrium 

126 with respect to water vapor binding on the LHA-goethite assemblages.

127

128 2.3.1 FTIR

129 Centrifuged wet pastes were transferred onto a diamond window of an Attenuated Total Reflectance (ATR) 

130 cell (Golden Gate, single-bounce) and dried in the analytical chamber of a FTIR spectrometer under a flow of 

131 200 sccm dry N2(g). FTIR spectra were collected during the drying period until all O−H stretching and bending 

132 modes of free water disappeared. DVS experiments were then carried out on the resulting dry mineral film in 

133 a closed-loop flow-through reaction cell, and exposed to water vapor pressures from 0 to 19 Torr (80% R.H.) 

134 at 25 ± 1 °C. 

135

136 FTIR spectra were continuously collected in situ with a Bruker Vertex 70/V FTIR spectrometer, equipped 

137 with a DLaTGS detector. All spectra were collected in the 600 − 4000 cm−1 range at a resolution of 4.0 cm−1 

138 and at a forward/reverse scanning rate of 10 Hz. Each spectrum was an average of 250 scans. The Blackman-

139 Harris 3-term apodization function was used to correct phase resolution.

140
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141 2.3.2 QCM

142 A gold-coated quartz resonator operating at 10 MHz was used for QCM measurements (eQCM 10M, 

143 Gamry Instruments Inc.). The time-independent serial resonance frequency (fs) of the quartz resonator exposed 

144 to a flow of 200 sccm dry N2(g) was first measured to obtain the correct baseline of the empty cell. A dilute 

145 aqueous suspension of the LHA-goethite assemblage was pipetted on the gold area of the resonator, then dried 

146 under the same flow of N2(g). The resulting fs was used to obtain the mass of the dry sample. A DVS 

147 experiment was then initiated to expose the sample to water vapor pressures from 0 to 19 Torr.

148

149 Changes in frequency (∆f) of the quartz resonator were converted to changes in sample mass (∆m) using 

150 the Sauerbrey equation:29 

151  (1)m
A

ff
qq




2
02

152 In this equation f0 is the resonant frequency of empty cell, A is the piezoelectrically active crystal area of the 

153 gold-coated quartz crystal (0.205 cm2), ρq is the density quartz (2.648 g/cm3) and µq is shear modulus of quartz 

154 (2.947   1011 g/cms2).

155

156 2.3.3 Water Vapor Adsorption and Condensation Modeling

157 Water vapor uptake by goethite and LHA sites was modeled using an adaptation of the model of Do & 

158 Do30, which we had previously31 shown to account for (i) adsorption and (ii) and condensation phenomena in 

159 mineral powders:

160

161 (2)Cμ = So
Kf∑

n = β + 1
1 np𝑤

n

1 + Kf∑
n = β + 1
1 p𝑤

n + Cμs
Kμ∑n = α + 1

1 p𝑤
n

Kμ∑n = α + 1
1 p𝑤

n + ∑n = α + 1
1 p𝑤

n ― 1

162

163 This equation predicts the total water condensation (C) as a function of the reduced partial pressure of water 

164 (pw=p/psat; where psat is the saturation pressure) in terms of the aforementioned adsorption (left-hand term) 

165 and condensation (right-hand term) regimes. Parameters for each regime include water-binding site densities 

166 for adsorption (So) and condensation (Cs) with their respective association constants (Kf, K) and hydration 

167 numbers ( ). 
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168 The adsorption term accounts for hydrogen binding of water molecules onto mineral and LHA surface 

169 sites. It is B.E.T.-type equation32 which is however forced to plateau at pw  0 by setting =2. This value 

170 denotes that a (hydr)oxo group can be involved in 2 (donating and/or accepting) hydrogen bonds, which is 

171 average hydration number that we retrieved in previous molecular modeling of water adsorption on various 

172 metal (oxy)hydroxides.31 The condensation pertains, in turn, to the condensation of water in the nano-/micro-

173 porous environments of the mineral-LHA mixture. It is triggered only when a nominal population of water 

174 (nano)clusters (e.g.   8) is exceeded30. While the data on hand could not be used to unambiguously constrain 

175 condensation parameters of Eq. 2, the shape of the modelled curve nonetheless provide the possibility to 

176 extract the adsorption term, which is central for understanding the intrinsic affinity of water to LHA-bound 

177 goethite. Finally, we also used this equation to decompose the adsorption isotherm of LHA on goethite.

178

179

180

181

182

183
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184 3. RESULTS AND DISCUSSIONS

185 LHA binding at goethite surfaces follows a Type II33 adsorption isotherm loading (Figure 1), that can be 

186 characterized as an adsorption regime at low LHA concentrations, and a precipitation-like regime at high LHA. 

187 Maximal adsorption values under the adsorption regime are the equivalent of ~56 C atoms/nm2, or ~3.7 times 

188 the total crystallographic oxygen site density (~15 sites/nm2)27,34,35. From these results, we estimate that the 

189 goethite surface should be already covered in LHA at total C/Fe > 0.05. The highest LHA loadings (C/Fe=5; 

190 220 adsorbed C atoms/nm2) suggest a precipitation-like regime possibly triggered by LHA-LHA interactions, 

191 and therefore in the establishment of LHA bulk environments entirely covering the goethite surface.

192

193 Figure 1. LHA binding on goethite after equilibration at pH 5. Total C/Fe ratios are expressed in terms of adsorption and 
194 precipitated LHA. The model was generated using Eq.2, here adapted for the case of LHA binding and precipitation on 
195 goethite.

196

197 Water vapor binding on goethite follows the characteristics of Type II33 adsorption isotherms, and is 

198 strongly affected by LHA loadings (Figures 2a-b). LHA loadings in the C/Fe = 0.005 - 0.01 range decreased 

199 goethite hydrophilicity, while loadings above this this range increased hydrophilicity. Water uptake of 

200 unbound LHA is highest due to its heterogeneous structure and abundant hydrophilic functional groups. As a 

201 result, increasing excess LHA loadings promotes water uptake.

202

203
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204  These changes can be appreciated further by decomposing these adsorption isotherms in terms of (i) 

205 adsorption and (ii) condensation regimes (Figure 2a), using Do & Do30 theory (Eq. 2) presented in Section 

206 2.3.3. In this framework, adsorption pertains to the attachment of water molecules to mineral surface and LHA 

207 functional groups via hydrogen bonding, followed by growth in the neighborhood of the adsorption site, very 

208 much in the manner described by B.E.T. theory.32 Condensation, on the other hand, pertains to water-water 

209 interactions leading to growth and coalescence of water (nano)droplets in (nano)/(micro)pores between 

210 goethite particles and within the LHA bulk.33   

211

212 Modeling of the water adsorption isotherms shows that maximal densities achieved under the adsorption 

213 regime on LHA-free goethite are equivalent to the total crystallographic O surface density (~15 

214 H2O/nm2)27,31,32, and therefore ~1-1.5 H2O monolayers. These loadings are however strongly affected by LHA 

215 loadings, as shown by the relationship of Figure 2c. This correlation expresses the decreased hydrophilicity 

216 of goethite at C/Fe below ~0.24 and of the increased hydrophilicity above these loadings. A mechanistic 

217 interpretation of these results can be developed by understanding the nature of organic-mineral interactions, 

218 and of hydrogen bonding of water on LHA-coated goethite. This can be gained by following the changes in 

219 the availability of the hydrophilic hydroxyl functional groups on goethite, as well as those of LHA (Figure 3), 

220 as will be detailed in the following paragraphs.
221
222
223

224
225 Figure 2. QCM-derived masses of water uptake by LHA and goethite. (a) Typical Type II water sorption isotherm on pure 
226 goethite. (b) Sorption isotherms for pure goethite, LHA and goethite-LHA, reported as total C/Fe (w/w). (c) Relationship 
227 between water site density (S of Eq. 2) and total carbon loading on goethite (C/Fe). Values for pure goethite and LHA are 
228 shown for reference.

229

230
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231
232 Figure 3. (a). Schematic representation of crystal habits of goethite (GT) particles under study, obtained from a selected 
233 portion of a snapshot of a Molecular Dynamics simulation from a previous study.18 (b-c) FTIR spectra of LHA-Goethite 
234 samples equilibrated at pH 5 then dried under N2(g). (c) Difference spectra of the 1200-1800 cm-1 region, with removed 
235 contributions from the goethite bulk (OH+OH = 1659 cm-1; ’OH=1794 cm-1; cf. Figure S1 for raw data). Arrows in 1.3 
236 adsorbed C atoms/nm2 point to collection of bands.
237
238

239 Changes in the availability of hydrophilic hydroxo groups populating the goethite surface (Fig. 3a) can 

240 be revealed by vibrational spectroscopy (Fig. 3b), a detailed account of which is given in a series of articles 

241 from our group.17–19,22,36,37 Briefly, the dominant (110) crystallographic face of goethite populated by rows of 

242 singly-coordinated −OH, doubly-coordinated μ−OH, and triply-coordinated μ3−OH groups. About 50% of 

243 these −OH donate a hydrogen bond to a neighboring −OH, while all accept a hydrogen bond from an 

244 underlying μ3,I−OH, as in the goethite bulk. 17–19,22,36,37 The intensities and positions of O-H stretching bands 

245 of −OH groups (3661 cm−1) and of the less reactive μ−OH and μ3,I−OH groups (3648 cm−1) are especially 

246 sensitive indicators of ligand exchange and hydrogen bonding reactions. Variations in the intensities of the 

247 triply-coordinated μ3,I−OH sites (3491 cm−1) are, in turn, a direct response of the coordination changes in −OH 

248 due to the presence of a hydrogen bond between these two groups (μ3,I−OHOH−). Finally, we note that 

249 while the minor (021) face also exposes −OH and μ−OH groups they are so strongly hydrogen-bonded that 

250 they generate no resolvable O-H stretch, as described in Song and Boily.17

251

252 The loss in intensity of these O-H stretching bands in the C/Fe 0 - 0.1 range confirms the loss of hydrophilic 

253 OH groups via ligand exchanges and/or the loss of the hydrophilic activity of these groups via hydrogen 

254 bonding with LHA functional groups.25, 37–39 These changes correlate with the appearance of LHA functional 

255 groups in the range of 1200-1800 cm-1 (Figure 3c), which we interpret as the appearance of a mixture of 

256 protonated (υC=O carboxyl = 1705 cm−1, υC-O-H = 1261 cm−1) and deprotonated (υCOOs = 1381 cm−1) groups, as 

257 well as aromatic backbone of LHA (υC=C aromatic = 1600 cm−1). They also reveal that the LHA-reacted 
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258 goethite surface exposes a mixture of OH groups and of LHA. At C loadings greater than the crystallographic 

259 density of goethite surface oxygens (> 26 C atoms/nm2; C/Fe > 0.1), all intensities of the OH band are lost 

260 due to direct ligand exchange with LHA and a red-shift in the stretching frequency of hydrogen-bonded group 

261 to a broad range of values below 3661 cm-1. The O-H spectral signature is then characterized by a blue-shift 

262 in the band of μ3,I−OH from the weakening of its hydrogen bond with −OH, as well as from the appearance 

263 of OH groups of sorbed LHA. Additionally, because LHA loadings increased under conditions where all -OH 

264 groups have been occupied, LHA binding must have been driven by additional mechanisms such as van der 

265 Waals-type hydrophobic bonding. This mechanism could be responsible for the precipitation of LHA at the 

266 highest loadings considered in this work (Fig. 1).

267
268 Figure 4. Baseline-subtracted FTIR spectra of C/Fe = 0.005 exposed to 0-60 % R.H. (a) O-H stretching region responding to 
269 -OH and 3I-OH groups. The 3699 cm-1 band is likely from geminal water bound directly to Fe sites, but is outside the scope 
270 of this work. (b) The 1200-1900 cm-1 region. This region shows the appearance of liquid-like water through the growth of the 
271 bending band of water (2). The ’OH 1794 cm-1 band is an bending overtone of the goethite bulk, and therefore not affected 
272 by water binding.
273
274

275
276
277 Figure 5. (a-b) Baseline-subtracted FTIR spectra of C/Fe = 5 exposed to 0-60 % R.H. (c) FTIR spectra of LHA first 
278 equilibrated at pH 5, then exposed to water vapor. 
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279

280 Exposure of water vapor to LHA-coated goethite (Fig. 4 & 5) also induced systematic changes in the 

281 vibration spectra of goethite and LHA functional groups, and generated bands strongly indicative of the 

282 formation of liquid-like water. 41,42 While this can first be appreciated by the appearance of the bending (ν2; 

283 Fig. 4b) and of the broad O-H stretching (Fig. 5c) bands of water deposited within the three-dimensional 

284 framework of LHA (see also Figs S3 & S4), the spectral signature of hydrophilic OH groups provide greater 

285 details on water condensation mechanisms. 

286

287 Samples with the lowest LHA loadings (C/Fe = 0.005) provide insight into the mechanisms of water 

288 binding at goethite surfaces exposing a mixture of (i) non-reacted OH groups and (ii) adjacently-bound LHA 

289 molecules. While our results (Fig. 2) showed that water loadings were lower than on LHA-free goethite, 

290 vibration spectra (Fig. 4) suggest that water binding mechanisms were not altered by LHA-binding.18 This can 

291 be appreciated in the loss and red-shift of the 3661 cm−1 band of OH with water loading, as well as in the 

292 blue-shift of the 3490 cm−1 band of μ3,I−OH to a triplet at 3512, 3555, and 3582 cm−1, also seen in LHA-free 

293 goethite.18 We note that this triplet results from a weakening of the H-bonding strength between μ3,I−OH and 

294 −OH sites by water through the formation of hydrogen bonding networks of the type: μ3,I−OH···−OH···−OH2 

295 and/or μ3,I−OH···−OH2. As water-binding mechanisms remain unchanged by LHA, lower water loadings are 

296 likely to result from the consumption of hydrophilic sites by LHA surface complexation, for example via 

297 ligand exchange and/or hydrogen bonding.  This could also imply that the intrinsic LHA bulk structure (e.g., 

298 intramolecular hydrogen bonding network) has undergone changes that, for example, expose hydrophobic 

299 sites to the outer portion of the macromolecules. This concept can be supported further in the 1200-1800 cm-

300 1 region (Fig. 3c) revealing a combination of bands that is not manifested at larger LHA loadings. Previous 

301 work from our group even showed that these conformational changes could be responsible for increasing the 

302 thermal stability of mineral-bound NOM.

303

304 This scenario diverges starkly with water binding to samples of high C/Fe loadings which, again, promote 

305 greater water loadings than in LHA-free goethite (Fig. 2). In this case, the aforementioned triplet (Fig. 4a) is 

306 readily transformed to a broad singlet, which is characteristic of a broad distribution of hydrogen bonding 

307 environments (Fig. 5a). We also note that the water vapor pressure dependence of the 1200-1800 cm-1 region 
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308 is also considerably less sensitive than that of pure LHA (Fig. 5). This suggests that LHA functional groups 

309 directly bound to goethite remain largely unaffected by hydration. It also implies that while water condensation 

310 in the three-dimensional array of pure LHA facilitates high water loadings, LHA binding to goethite limits 

311 this intrinsic capability to accommodate water. 

312

313 To summarize, we can explain the strong LHA-loading dependence on water binding in the following 

314 manner. LHA binding at low loadings (1.3-26 C atoms/nm2; C/Fe = 0.005 - 0.1) involves a greater proportion 

315 of LHA moieties for ligand exchange or hydrogen bonding to goethite surfaces. This results in potentially 

316 important configurational changes in LHA structure, perhaps even exposing hydrophobic portions of the 

317 molecule to the goethite surface. This, with the decrease in accessible hydrophilic groups of the goethite 

318 surface, collectively lowers water binding on goethite reacted LHA loadings below ~240 mg C per g Fe. Water 

319 affinities become, in turn, substantially larger at high C/Fe loadings because a smaller fraction of the moieties 

320 is dedicated to binding with goethite, leaving excess LHA reacting with water in a similar manner to pure 

321 LHA. 
322

323 Finally, we note that while this work on water condensation in NOM-reacted minerals was limited to a 

324 model system, we anticipate that its findings should be applicable to a wider range of representative systems. 

325 Recognition of the NOM loading dependency on the hygroscopic properties of solid materials in nature should 

326 not only be of importance to the study of terrestrial environments but also in the study of atmospheric clouds 

327 and rain formation phenomena43,44 Additionally, the molecular-scale knowledge of water vapor binding in 

328 organic-mineral assemblages should serve to consolidate our understanding of natural photocatalytic 

329 reactions45 where co-adsorbed water is an essential ingredient in photodegradation processes.46
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