F. Auzel, Upconversion and anti-Stokes processes with f and d Ions in solids, Chem. Rev, vol.104, p.139, 2004.

D. R. Gamelin and H. U. Güdel, Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy, Acc. Chem. Res, vol.33, p.235, 2000.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, Upconversion nanoparticles : design, nanochemistry, and applications in theranostics, Chem. Rev, vol.114, p.5161, 2014.

M. Haase and H. Schäfer, Upconverting nanoparticles, Angew. Chem. Int. Ed, vol.50, p.5808, 2011.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu et al., Lanthanide-doped upconversion nano-bioprobes: electronic ? structures, optical properties, and biodetection, Chem. Soc. Rev, p.1379, 2015.

Y. Suffren, B. Golesorkhi, D. Zare, L. Guénée, H. Nozary et al., Taming Lanthanide-Centered Upconversion at the Molecular Level, Inorg. Chem, p.9964, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01338695

L. Aboshyan-sorgho, C. Besnard, P. Pattison, K. R. Kittilstved, A. Aebischer et al., Near infrared to visible light upconversion in a molecular trinuclear df-d complex, Angew. Chem. Int. Ed, vol.50, p.4108, 2011.

I. Hyppänen, S. Lahtinen, T. Ääritalo, J. Mäkelä, J. Kankare et al., Photon upconversion in a molecular lanthanide complex in anhydrous solution at room temperature, ACS Photonics, vol.1, p.394, 2014.

A. Nonat, C. F. Chan, T. Liu, C. Platas-iglesias, K. Wong et al., Room temperature molecular up conversion in solution, Nature Commun, 2016.

N. Souri, P. Tian, C. Platas-iglesias, S. Chafaa, K. L. Wong et al., Upconverted photosensitization of Tb visible emission by NIR Yb excitation in descrete supramolecular heteropolynuclear complexes, J. Am. Chem. Soc, p.1456, 2017.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, ) Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects, Chem. Soc. Rev, vol.44, issue.12, p.1561, 2015.

L. J. Charbonnière, Bringing upconversion down to the molecular scale, Bioconjugate Chem, vol.21, issue.13, p.8566, 2010.

A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker et al., Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states, J. Chem. Soc. Perkin Trans, vol.2, p.493, 1999.

W. D. Horrocks, . Jr, D. Sudnick, C. Bischof, J. Wahsner et al., Laser-induced luminescence decay constants provide a direct measure of the number of metalcoordinated water molecules, J. Am. Chem. Soc, vol.101, issue.16, p.14334, 1979.

Y. Ning, J. Tang, Y. Liu, J. Jing, Y. Sun et al., Highly luminescent, biocompatible ytterbium(III) complexes as near-infrared fluorophores for living cell imaging, Chem. Sci, vol.9, p.3742, 2018.

J. Hu, Y. Ning, Y. Meng, J. Zhang, Z. Wu et al., ) Doffek, C.; Seitz, M. The radiative lifetime in near-IR luminescent ytterbium cryptates: the key to extremely high quantum yields, Angew. Chem. Int. Ed, vol.54, p.9719, 2015.

T. Zhang, X. Zhu, C. C. Cheng, W. Kwok, H. Tam et al., Watersoluble mitochondria-specific ytterbium complex with impressive NIR emission, J. Am. Chem. Soc, p.133, 2011.

F. Auzel and P. Goldner, Towards rare-earth clustering control in doped glasses, Opt. Mater, vol.16, p.93, 2001.

D. Zare, Y. Suffren, L. Guénée, S. V. Eliseeva, H. Nozary et al., Smaller than a nanoparticle with the design of discrete polynuclear molecular complexes displaying near-infrared to visible upconversion, Dalton Trans, p.2529, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01992311

G. M. Salley, R. Valiente, H. U. Güdel, G. M. Salley, R. Valiente et al., Cooperative Yb 3+ ?Tb 3+ dimer excitations and upconversion in Cs 3 Tb 2 Br 9 :Yb 3+, J. Phys.: Condens. Matter, vol.14, issue.24, p.305, 2001.

S. Abada, A. Lecointre, M. Elhabiri, and L. J. Charbonnière, Formation of very stable and selective Cu(II) complexes with a non-macrocyclic ligand: can basicity rival pre-organization? Dalton Trans, p.9055, 2010.

I. Lukes, J. Kotek, P. Vojtisek, and P. Hermann, Complexes of tetraazacycles bearing methylphosphinic/phosphonic acid pendant arms with copper(II), zinc(II) and lanthanides(III). A comparison with their acetic acid analogues, Coord. Chem. Rev, vol.287, pp.216-217, 2001.

F. Benetollo, G. Bombieri, L. Calabi, S. Aime, and M. Botta, Structural variations across the lanthanide series of macrocyclic DOTA complexes: insights into the design of contrast agents for magnetic resonance imaging, Inorg. Chem, vol.42, p.148, 2003.

F. Avecilla, J. A. Peters, C. F. Geraldes, L. Pellegatti, J. Zhang et al., Pyridine-based lanthanide complexes: towards bimodal agents operating as near infrared luminescent and MRI reporters, Eur. J. Inorg. Chem, issue.30, p.6591, 2003.

S. Abada, A. Lecointre, M. Elhabiri, D. Esteban-gomez, C. Platas-iglesias et al., Highly relaxing gadolinium based MRI contrast agents responsive to Mg 2+ sensing, Chem. Commun, vol.48, p.4085, 2012.

S. Aime, S. Gianolo, D. Corpillo, C. Cavalotti, G. Palmisano et al., Designing novel contrast agents for magnetic resonance imaging. Synthesis and relaxometric characterization of three gadolinium(III) complexes based on functionalized pyridine-containing macrocyclic ligands, Helv. Chim. Acta, vol.86, p.615, 2033.

M. Elhabiri, S. Abada, M. Sy, A. Nonat, P. Choquet et al., Importance of outer-sphere and aggregation phenomena in the relaxation properties of phosphonated gadolinium complexes with potential applications as MRI contrast agents, Chem. Eur. J, vol.21, p.6535, 2015.

N. Souri, P. Tian, A. Lecointre, Z. Lemaire, S. Chafaa et al., Formation of mono-and polynuclear luminescent lanthanide complexes based on the coordination of preorganized phosphonated pyridines, Inorg. Chem, vol.55, issue.35, p.6095, 2016.

M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez et al., , 2013.

A. Ruiz-martinez, D. Casanova, and S. Alvarez, Polyhedral Structures with an Odd Number of Vertices: Nine-Coordinate Metal Compounds, Chem. Eur. J, vol.14, 2008.

J. A. Peters, J. Huskens, and D. J. Raber, Lanthanide induced shifts and relaxation rate enhancements, Prog. Nucl. Magn. Reson. Spectrosc, vol.28, pp.283-350, 1996.

S. Aime, L. Barbero, M. Botta, G. Ermondi, M. J. Frisch et al., Determination of metal-proton distances and electronic relaxation times in lanthanide complexes by nuclear magnetic resonance spectroscopy, J. Chem. Soc, p.225, 1992.

J. H. Forsberg, R. M. Delaney, Q. Zhao, G. Harakas, and R. Chandran, Analyzing lanthanide-induced shifts in the NMR spectra of lanthanide, Inorg. Chem, p.3705, 1995.

O. A. Blackburn, J. D. Routledge, L. B. Jennings, N. H. Rees, A. M. Kenwright et al., Substituent effects on fluoride binding by lanthanide complexes of DOTAtetraamides, Dalton Trans, p.3070, 2016.

N. Ouali, B. Bocquet, S. Rigault, P. Morgantini, J. Weber et al., Analysis of paramagnetic NMR spectra of triple-helical lanthanide complexes with 2,6-dipicolinic acid revisited: a new assignment of structural changes and crystal-field effects 25 years later, Inorg. Chem, p.1436, 2002.

O. A. Blackburn, . N. Chilton, K. Keller, C. E. Tait, W. K. Myers et al., Spectroscopic and crystal field consequences of fluoride binding by [Yb·DTMA] 3+ in aqueous solution, Phys. Chem. Chem. Phys, vol.54, issue.45, p.10783, 1542.

S. Eliseeva and J. G. Bünzli, Lanthanide luminescence for functional materials and bio-sciences, Chem. Soc. Rev, p.189, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02102772

M. Pollnau, D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B: Condens. Matter, p.3337, 2000.

N. Weibel, L. J. Charbonnière, M. Guardigli, A. Roda, and R. Ziessel, Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging, J. Am. Chem. Soc, p.4888, 2004.

Y. Suffren, D. Zare, S. V. Eliseeva, L. Guénée, H. Nozary et al., Near-infrared to visible light-upconversion in molecules: from dream to reality, J. Phys. Chem. C, p.117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01989823

A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo et al., SIR92 -a program for automatic solution of crystal structures by direct methods, J. Appl. Crystallogr, vol.32, p.115, 1999.

G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. C, p.3, 2015.

L. Farrugia and M. Regueiro-figueroa, Platas-Iglesias, C. Toward the prediction of water exchange rates in magnetic resonance imaging contrast agents: a density functional theory study, J. Phys. Chem. A, vol.45, issue.53, p.6436, 2012.

J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Climbing the density functional ladder: non-empirical metageneralized gradient approximation designed for molecules and solids, Phys. Rev. Lett, p.146401, 2003.
DOI : 10.1103/physrevlett.91.146401

URL : http://arxiv.org/pdf/cond-mat/0306203

M. Dolg, H. Stoll, A. Savin, and H. Preuss, Energy-adjusted pseudopotentials for the rare earth elements, Theor. Chim. Acta, vol.75, p.173, 1989.
DOI : 10.1007/bf00528565

J. Tomasi, B. Mennucci, and R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev, p.2999, 2005.
DOI : 10.1002/chin.200542292