R. H. Grubbs, A. G. Wenzel, D. J. O'leary, E. H. Khosravi-;-r, and . Grubbs, Handbook of Metathesis, 2 nd Edition, Olefin Metathesis: Theory and Pratice, p.1746, 2010.

A. Parenty, X. Moreau, G. Niel, and J. Campagne, Chem. Rev, vol.106, p.1, 2006.

H. Clavier, K. Grela, A. Kirschning, M. Mauduit, and S. P. Nolan, Angew. Chem. Int. Ed, vol.46, p.6786, 2007.

F. Grisi, C. Costabile, A. Grimaldi, C. Viscardi, C. Saturnino et al., 5928; b) A. Gradillas and J. Perez-Castells in Metathesis in Natural Product Synthesis, For recent reviews or book chapters dealing with olefin metathesis macrocyclization, p.149, 2010.

). H. Hagiwara, T. Nakamura, N. Okunaka, T. Hoshi, and T. Suzuki, Helv. Chim. Acta, p.175, 2010.

, 119, 9130; b) For instance, see: A. Fürstner and G. Seidel, J. Organomet. Chem, p.75, 1997.

:. A. For, P. Michrowska, K. Wawrzyniak, and . Grela, Eur. J. Org. Chem, 2004.

A. S. Williams-;-b, ). P. Kraft, J. A. Bajgrowicz, C. Denis, G. Frater et al., 39, 2980; For toxicological studies on macrocyclic lactones and ketones, see: c), S219; d), vol.49, p.126, 1707.

D. Mcginty, C. S. Letizia, and A. M. Api, Food and Chemical Toxicology, vol.49, p.207, 2011.

D. Mcginty, C. S. Letizia, and A. M. Api, Food and Chemical Toxicology, vol.49, p.193, 2011.

D. Mcginty, C. S. Letizia, and A. M. Api, Food and Chemical Toxicology, vol.49, p.152, 2011.

D. Mcginty, C. S. Letizia, and A. M. Api, Food and Chemical Toxicology, vol.49, p.120, 2011.

S. Hübner, J. G. De-vries, and V. Farina, 358, 3; For a seminal review on olefin metathesis at industrial scale, see b) C. S. Higman, Angew. Chem. Int. Ed, vol.55, p.3552, 2016.

T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E. Wilhem, M. Scholl et al., 29, 5450; f), J. Mol. Catal. A: Chem, vol.125, p.5673, 2003.

A. Fürsner, O. R. Thiel, L. Ackermann, H. Schanz, and S. P. Nolan, J. Organomet. Chem, vol.65, p.242, 2000.

, For the pioneer use of benzoquinones, acids or oxidants to prevent isomerisation during Olefin Metathesis, see: S. H

D. P. Hong, C. W. Sanders, R. H. Lee, and . Grubbs, J. Am. Chem. Soc, vol.127, 2005.

P. Gimeno, J. H. Formentin, R. Steinke, and . Vilar, Eur. J. Org. Chem, p.918, 2007.

, For macrocyclic-RCM involving low catalyst loading, see: a) C

X. Shu, M. Zeng, X. Hao, N. K. Wei, C. A. Yee et al., Org. Lett, p.10, 1303.

R. Kadyrov, C. J. Eur, A. ;-c)-r.-gawin, M. Tracz, A. Chwalba et al., , vol.19, p.5443, 1002.

M. Jordaan, P. Van-helden, C. Van-sittert, and H. C. Vosloo, 254, 145 ; see also, in Olefin Metathesis: Theory and Pratice, p.85, 2006.

:. M. For, H. C. Jordaan, and . Vosloo, Adv. Synth. Catal, p.184, 2007.

C. W. Lee, R. H. Grubbs, J. Org, . C. Chem-;-b)-j, M. D. Conrad et al., 140, 8895; see also ref. 16; f) For a recent design of catalysts limiting the formation of oligomers, see, Angew. Chem. Int. Ed, vol.66, 1125.

. Yamamoto, . Acs-sustainable-chem, and . Eng, 2016, 4, 5703. For a previous study reporting AcOEt as a co-solvent, see also ref. 6 and 19d

M. Scholl, S. Ding, C. W. Lee, and R. ,

. Grubbs, Org. Lett, vol.1, 1999.

C. A. Clavier, S. P. Urbina-blanco, . B. Nolan-;-s, J. S. Garber, B. L. Kingsbury et al., Complex Ru-5: c), Angew. Chem. Int. Ed, vol.28, p.4038, 2000.

D. Rix, F. Caijo, I. Laurent, F. Boeda, H. Clavier et al., Eur. J. Org. Chem, vol.8, p.4254, 2008.

, No or very low conversions were observed below 70°C at this catalyst loading

M. Rouen, E. Borré, L. Falivene, L. Toupet, M. Berthod et al., , vol.43, p.7970, 2014.

, NHCs-Ru complexes, 2013.

, The thermal stability of Ru-10 with has been previously studied, see ref. 23a

T. Weskamp, W. C. Schattenmann, M. Spiegler, W. A. Herrmann-;-b)-t, J. P. Trnka et al., Angew. Chem. Int. Ed, vol.38, 1052.

R. A. Bantreil, A. M. Randall, S. P. Slawin, . H. Nolan-;-l, H. Peeck et al., Organometallics, vol.29, p.2761, 2010.

M. Rouen, P. Queval, L. Falivene, J. Allard, L. Toupet et al., Chem. Eur. J, vol.20, p.13716, 2014.

P. Queval, C. Jahier, M. Rouen, J. Legeay, I. Artur et al.,

A. Mauduit-;-b)-r.-tarrieu, J. Dumas, T. Thongpaen, T. Vives, V. Roisnel et al., Angew. Chem. Int. Ed, vol.52, p.1880, 2013.

, CCDC-1051157

, CCDC-907749

, CCDC-906510

, Ru-11e) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via, CCDC-870531

B. K. Keitz, J. Bouffard, G. Bertrand, and R. H. Grubbs, J. Am. Chem. Soc, vol.133, 2011.

C. Bruneau and C. Fischmeister, Olefin Metathesis: Theory and Pratice, p.523, 2014.

, For a previous synthesis of (9E)-Isoambrettolide 9a (lactonisation): I. Shiina and M. Hashizume, Tetrahedron, vol.62, p.7934, 2006.

, At 0.1 mol% of catalyst loading, a similar yield is observed

D. Mcginty, C. S. Letizia, and A. M. Api, 49, S183; b) For a previous synthesis of Dihydro-ambrettolide 10a, Food and Chemical Toxicology, vol.8, p.4940, 2010.

Y. K. Nishikawa, K. Yoshimi, T. Maeda, I. Morita, T. Takahashi et al., For a previous synthesis of 10b (radical photocyclization), see: S, J. Org. Chem, p.582, 2013.

, For a previous synthesis of macrolactone 10c (lactonisation), see, Tetrahedron, vol.63, p.11325, 2007.

V. Martí-centelles, M. D. Pandey, M. I. Burguete, and S. V. Luis, Chem. Rev, vol.115, p.8736, 2015.

R. Callejo, M. J. Corr, M. Yang, M. Wang, D. B. Cordes et al., For a previous synthesis of civetone 9b and dihydro-civetone 10d: a), Chem. Eur. J, vol.22, p.8137, 2016.

:. L. Z-civetone, M. B. Rosebrugh, V. M. Herbert, B. K. Marx, R. H. Keitz et al., J. Am. Chem. Soc, p.1276, 2013.

, At 0.25 mol% of catalyst loading, the yield slightly dropped to reach 40% of 9b

, For a previous synthesis of civetone analog 9c, see, J. Am. Chem. Soc, vol.77, p.5423, 1965.

, For a previous synthesis of macrocyclic carbonate 9d, see: A. Michrowska, P. Wawrzyniak and K. Grela, Eur. J. Org. Chem, p.2053, 2004.

, For a previous synthesis of macrolactam 10e, see: D. E

K. S. Williams, B. Craig, L. M. Patrick, R. Mchardy, M. Van-soest et al., J. Org. Chem, p.245, 2002.

, As complexes Ru-11 incorporate NHC ligands available through a one-step process involving cheap reagents, they could be considered as low-cost catalysts, see ref, p.27