A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard et al., Photocatalytic degradation pathway of methylene blue in water, App. Cat. B Environ, vol.31, pp.145-157, 2001.

J. Grzechulska and A. W. Morawski, Photocatalytic Decomposition of Azo-Dye Acid Black 1 in Water over Modified Titanium Dioxide, Appl. Catal. B Environ, vol.36, pp.45-51, 2002.

N. P. Radhika, R. Selvin, R. Kakkar, and A. Umar, Recent advances in nano-photocatalysts for organic synthesis, Arab. J. Chem, 2016.

S. ?egota, L. ?urkovi?, D. Ljubas, I. F. Houra, and N. Toma?i?, Synthesis, characterization and photocatalytic properties of sol-gel TiO 2 films, Ceram. Int, vol.37, pp.1153-1160, 2011.

M. Zulfiqar, S. Chowdhury, and A. A. Omar, Hydrothermal synthesis of multiwalled TiO 2 nanotubes and its photocatalytic activities for Orange II removal, Sep. Sci. Technol, vol.53, pp.1412-1422, 2018.

H. Cheng, S. Chen, S. Yang, H. Liu, and K. Lin, Sol-Gel Hydrothermal Synthesis and Visible Light Photocatalytic Degradation Performance of Fe/N Codoped TiO 2 Catalysts, Materials, vol.11, p.939, 2018.

H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue et al., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J. Photochem. Photobiol. A, vol.148, pp.257-261, 2002.

S. Nagamine, A. Sugioka, H. Iwamoto, and Y. Konishi, Forma tion of TiO 2 hollow microparticles by spraying water drop lets into an organic solution of titanium tetraisopropoxide (TTIP)-Effects of TTIP concentration and TTIP protecting additives, Powder Technol, vol.186, pp.168-175, 2008.

A. Hosseinnia, M. Keyanpour-rad, and M. Pazouki, Photo-catalytic Degradation of Organic Dyes with Different Chromophores by Synthesized Nanosize TiO 2 Particles, World Appl. Sci. J, vol.8, pp.1327-1332, 2010.

D. R. Shinde, P. S. Tambade, M. G. Chaskar, and K. M. Gadave, Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO 2 and SnO 2 : A comparative study, Drink. Water Eng. Sci, vol.10, pp.109-117, 2017.

O. Sacco, M. Stoller, V. Vaiano, P. Ciambelli, A. Chianese et al., Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped TiO 2 Photocatalysts, Int. J. Photoenergy, 2012.

Y. G. Habba, M. Capochichi-gnambodoe, and Y. Leprince-wang, Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification, Appl. Sci, 1185.
URL : https://hal.archives-ouvertes.fr/hal-01721129

C. Gionco, D. Fabbri, P. Calza, M. C. Paganini, and . Synthesis, Characterization and Photocatalytic Tests of N-Doped Zinc Oxide: A New Interesting Photocatalyst, J. Nanomater, 2016.

A. Mayoufi, M. F. Nsib, O. Ahmed, and A. Houas, Synthesis, characterization and photocatalytic performance of W, N, S-tri-doped TiO 2 under visible light irradiation, C. R. Chim, vol.18, pp.875-882, 2015.

O. Baghriche, S. Rtimi, C. Pulgarin, and J. Kiwi, Polystyrene CuO/Cu 2 O uniform films inducing MB-degradation under sunlight, Catal. Today, vol.284, pp.77-83, 2017.

H. Zeghioud, A. A. Assadi, N. Khellaf, H. Djelal, A. Amrane et al., Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: Dynamics and mechanism, J. Photochem. Photobiol. A Chem, vol.365, pp.94-102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874734

H. Aliah, M. P. Aji, E. Sustini, M. Budiman, and M. Abdullah, TiO 2 Nanoparticles-Coated Polypropylene Copolymer as Photocatalyst on Methylene Blue Photodegradation under Solar Exposure, Am. J. Environ. Sci, vol.8, pp.280-290, 2012.

H. Zeghioud, N. Khellaf, A. Amrane, H. Djelal, W. Elfalleh et al., Photocatalytic performance of TiO 2 impregnated polyester for the degradation of Reactive Green 12: Implications of the surface pretreatment and the microstructure, J. Photochem. Photobiol. A Chem, vol.346, pp.493-501, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581231

S. Rtimi, Indoor Light Enhanced Photocatalytic Ultra-Thin Films on Flexible Non-Heat Resistant Substrates Reducing Bacterial Infection Risks, vol.7, p.57, 2017.

H. Zeghioud, N. Khellaf, H. Djelal, A. Amrane, and M. Bouhelassa, Photocatalytic reactors dedicated to the degradation of hazardous organic pollutants: Kinetics, mechanistic aspects and Design-A review, Chem. Eng. Commun, vol.203, pp.1415-1431, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381140

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev, vol.95, pp.69-96, 1995.

M. R. Biswas, A. Ali, K. Y. Cho, and W. Oh, Novel synthesis of WSe 2 -Graphene-TiO 2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO 2 into CH 3 OH, Ultrason. Sonochem, vol.42, pp.738-746, 2018.

A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev, vol.1, pp.1-21, 2000.

S. Rtimi, D. D. Dionysiou, S. C. Pillai, and J. Kiwi, Advances in bacterial inactivation by Ag, Cu, Cu-Ag coated surfaces & medical devices, Appl. Catal. B Environ, vol.240, pp.291-318, 2019.

S. Rtimi, C. Pulgarin, R. Sanjines, and J. Kiwi, Kinetics and mechanism for transparent polyethylene-TiO 2 films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation, Appl. Catal. B Environ, vol.162, pp.236-244, 2015.

X. Tan, J. Liu, J. Niu, J. Liu, and J. Tian, Recent progress in magnetron sputtering technology used on fabrics, Materials, vol.11, 1953.

C. S. Uyguner-demirel, C. N. Birben, and M. Bekbolet, A comprehensive review on the use of second generation TiO 2 photocatalysts: Microorganism inactivation, Chemosphere, vol.211, pp.420-448, 2018.

M. K. Ballo, S. Rtimi, J. Kiwi, C. Pulgarin, J. M. Entenza et al., Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata, J. Photochem. Photobiol. B Biol, vol.174, pp.229-234, 2017.

H. Wu, X. Zhang, Z. Geng, Y. Yin, R. Hang et al., Preparation, antibacterial effects and corrosion resistant of porous Cu-TiO 2 coatings, Appl. Surf. Sci, vol.308, pp.43-49, 2014.

W. Sangchay, L. Sikong, and K. Kooptarnond, Photocatalytic and Self-Cleaning Properties of TiO 2 -Cu Thin Films on Glass Substrate, Appl. Mech. Mater, pp.152-154, 2012.

S. Rtimi, O. Baghriche, C. Pulgarin, J. Lavanchy, and J. Kiwi, Growth of TiO 2 /Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Technol, vol.232, pp.804-813, 2013.

M. Sadeghi-kiakhani, S. Khamseh, A. Rafie, S. M. Tekieh, P. Zarrintaj et al., Thermally stable antibacterial wool fabrics surface-decorated by TiON and TiON/Cu thin films, Surf. Innov, vol.6, pp.258-265, 2018.

, Environmentally Mild Self-Cleaning Processes on Textile Surfaces under Daylight Irradiation: Critical Issues, Active Coatings for Smart Textiles, vol.3

S. Rtimi, R. Sanjines, C. Pulgarin, and J. Kiwi, Microstructure of Cu?Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties, ACS Appl. Mater. Interfaces, vol.8, pp.56-63, 2016.

P. Docampo, S. Guldin, U. Steiner, and H. J. Snaith, Charge Transport Limitations in Self-Assembled TiO 2 Photo-anodes for Dye-Sensitized Solar Cells, J. Phys. Chem. Lett, vol.4, pp.698-703, 2013.

G. Mamba, C. Pulgarin, J. Kiwi, M. Bensimon, and S. Rtimi, Synchronic coupling of Cu 2 O(p)/CuO(n) semiconductors leading to Norfloxacin degradation under visible light: Kinetics, mechanism and film surface properties, J. Catal, vol.353, pp.133-140, 2017.

P. Mao, J. Jiang, Y. Pan, C. Duanmu, S. Chen et al., Uptake of Iodide from Solutions by Hollow Cu-Based Adsorbents, Materials, vol.11, p.769, 2018.

M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin et al., Photocatalytic discolorization of methyl orange solution by Pt modified TiO 2 loaded on natural zeolite, Dyes Pigm, vol.77, pp.327-334, 2008.

S. Rong and Y. Sun, Degradation of TAIC by water falling film dielectric barrier discharge-Influence of radical scavengers, J. Hazard. Mater, vol.287, pp.317-324, 2015.

A. L. Giraldo, G. A. Penuela, R. A. Torres-palma, N. J. Pino, R. A. Palominos et al., Degradation of the antibiotic oxolinic acid by photocatalysis with TiO 2 in suspension, Water Res, vol.44, pp.5158-5167, 2010.

Y. Chen, S. Yang, K. Wang, and L. Lou, Role of primary active species and TiO 2 surface characteristic in UV-illuminated photodegradation of acid orange 7, J. Photochem. Photobiol. A Chem, vol.172, pp.47-54, 2005.

C. Di-valentin and D. Fittipaldi, Hole Scavenging by Organic Adsorbates on the TiO 2 Surface: A DFT Model Study, J. Phys. Chem. Lett, 1901.

M. Shen and M. A. Henderson, Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO 2, J. Phys. Chem. Lett, vol.2, pp.2707-2710, 2011.

B. Pare, S. B. Jonnalagadda, H. Tomar, P. Singh, and V. W. Bhagwat, ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation, Desalination, vol.232, pp.80-90, 2008.

V. K. Gupta, R. Jain, S. Agarwal, and A. Nayak, Photodegradation of hazardous dye quinoline yellow catalyzed by TiO 2 , Meenakshi Shrivastava, J. Colloid Interface Sci, vol.366, pp.135-140, 2012.

E. M. Rodríguez, G. Márquez, M. Tena, P. M. Álvarez, and F. J. Beltrán, Determination of main species involved in the first steps of TiO 2 photocatalytic degradation of organics with the use of scavengers: The case of ofloxacin, Appl. Catal. B, vol.178, pp.44-53, 2015.

H. A. Al-ekabi and N. Serpone, Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix, J. Phys. Chem, vol.92, pp.5726-5731, 1988.

M. Fujihira, Y. Satoh, and T. Osa, Heterogeneous photocatalytic reaction on semiconductor materials. III.effect of pH and Cu + ions on the photo-fenton type reaction, Bull. Chem. Soc. Jpn, vol.55, pp.666-671, 1982.

D. P. Das, N. Baliarsingh, and K. M. Parida, Photocatalytic decolorisation of Methylene Blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation, J. Mol. Catal. A Chem, vol.261, pp.241-261, 2007.

A. Sharma and R. K. Dutta, Studies on drastic improvement of photocatalytic degradation of acid orange -74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents, RSC Adv, vol.5, pp.43815-43823, 2015.

W. Subramonian and T. Wu, Effect of Enhancers and Inhibitors on Photocatalytic Sunlight Treatment of Methylene Blue, Water Air Soil Pollut, vol.225, pp.1-15, 2014.

A. V. Rupa, D. Manikandan, D. Divakar, and T. Sivakumar, Effect of deposition of Ag on TiO 2 nanoparticles on the photodegradation of Reactive Yellow-17, J. Hazard. Mater, vol.147, pp.906-913, 2007.

B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan, Solar light induced and TiO 2 assisted degradation of textile dye Reactive Blue 4, Chemosphere, vol.46, pp.1173-1181, 2002.

A. J. Chaudharya, M. U. Hassana, and S. M. Grimes, Simultaneous recovery of metals and degradation of organic species: Copper and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), J. Hazard. Mater, vol.165, pp.825-831, 2009.

R. Kumawat, I. Bhati, and R. Ameta, Role of some metal ions in photocatalytic degradation of Rose Bengal dye, Indian J. Chem. Technol, vol.19, pp.191-194, 2012.

L. A. Espinoza, E. T. Haseborg, M. Weber, E. Karle, R. Peschke et al., Effect of selected metal ions on the photocatalytic degradation of bog lake water natural organic matter, Water Res, vol.45, pp.1039-1048, 2011.

C. Chen, X. Li, W. Ma, J. Zhao, H. Hidaka et al., Effect of Transition Metal Ions on the TiO 2 -Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism, J. Phys. Chem. B, vol.106, pp.318-324, 2002.

D. Bahnemann, Environmental Photochemistry Part III. In The Handbook of Environmental Chemistry D, Surface-Modified Photocatalysts, vol.35, pp.23-44, 2015.

D. Bockelmann, M. Lindner, D. F. Bahnemann, and . Particles, Science and Technology, 1996.

S. Rtimi, S. Konstantinidis, N. Britun, M. Bensimon, I. Khmel et al., Extracellular bacterial inactivation proceeding without Cu-ion release: Drastic effects of the applied plasma energy on the performance of the Cu-polyester (PES) samples, Appl. Catal. B Environ, vol.239, pp.245-253, 2018.