P. Colombo, G. Mera, R. Riedel, and G. D. Soraru, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc, vol.93, issue.7, pp.1805-1837, 2010.

C. Stabler, E. Ionescu, M. Graczyk-zajac, I. Gonzalo-juan, and R. Riedel, All-Rounder" materials for advanced structural and functional applications, J. Am. Ceram. Soc, vol.101, issue.11, 2018.

Y. D. Blum, D. B. Macqueen, and H. Kleebe, Synthesis and characterization of carbon-enriched silicon oxycarbides, J. Eur. Ceram. Soc, vol.25, issue.2-3, pp.143-149, 2004.

H. Kleebe and Y. D. Blum, SiOC ceramic with high excess free carbon, J. Eur. Ceram. Soc, vol.28, issue.5, 2008.

H. Brequel, J. Parmentier, S. Walter, R. Badheka, G. Trimmel et al., Systematic Structural Characterization of the High-Temperature Behavior of Nearly Stoichiometric Silicon Oxycarbide Glasses, vol.16, pp.2585-2598, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00248020

S. J. Widgeon, S. Sen, G. Mera, E. Ionescu, R. Riedel et al., Navrotsky, 29Si and 13C Solid-State NMR Spectroscopic Study of Nanometer-Scale Structure and Mass Fractal Characteristics of Amorphous Polymer Derived Silicon Oxycarbide Ceramics, Chem. Mater, vol.22, issue.23, pp.6221-6228, 2010.

L. Bois, J. Maquet, F. Babonneau, and D. Bahloul, Structural Characterization of Sol-Gel Derived Oxycarbide Glasses. 2. Study of the Thermal Stability of the Silicon Oxycarbide Phase, Chem. Mater

, , pp.975-981, 1995.

F. Rosenburg, E. Ionescu, N. Nicoloso, and R. Riedel, High-Temperature Raman Spectroscopy of NanoCrystalline Carbon in Silicon Oxycarbide, Materials (Basel), vol.11, issue.1, pp.1-9, 2018.

G. D. Soraru, G. Andrea, R. Campostrini, F. Babonneau, and G. Mariotto, Structural characterization and high-temperature behavior of silicon oxycarbide glasses prepared from sol-gel precursors containing Si-H bonds, J. Am. Ceram. Soc, vol.78, issue.2, pp.379-387, 1995.

G. D. Soraru, E. Dallapiccola, and G. , Mechanical characterization of sol-gel-derived silicon oxycarbide glasses, J. Am. Ceram. Soc, vol.79, issue.8, pp.2074-2080, 1996.

T. Rouxel, G. Massouras, and G. Soraru, High temperature behavior of a gel-derived SiOC glass: elasticity and viscosity, J. Sol-Gel Sci. Technol, vol.14, issue.1, pp.87-94, 1999.

T. Rouxel, G. Soraru, and J. Vicens, Creep viscosity and stress relaxation of gel-derived silicon oxycarbide glasses, J. Am. Ceram. Soc, vol.84, issue.5, pp.1052-1058, 2001.
DOI : 10.1111/j.1151-2916.2001.tb00789.x

H. Kleebe, C. Turquat, and G. D. Soraru, Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy, J. Am. Ceram. Soc, vol.84, issue.5, 2001.
DOI : 10.1111/j.1151-2916.2001.tb00792.x

C. Moysan, R. Riedel, R. Harshe, T. Rouxel, and F. Augereau, Mechanical characterization of a polysiloxane-derived SiOC glass, J. Eur. Ceram. Soc, vol.27, issue.1, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00327628

G. M. Renlund, S. Prochazka, and R. H. Doremus, Silicon oxycarbide glasses. Part II. Structure and properties, J. Mater. Res, vol.6, issue.12, 1991.

B. Papendorf, E. Ionescu, H. Kleebe, C. Linck, O. Guillon et al., Hightemperature creep behavior of dense SiOC-based ceramic nanocomposites: microstructural and phase composition effects, J. Am. Ceram. Soc, vol.96, issue.1, 2013.
DOI : 10.1111/jace.12067

E. Ionescu, C. Balan, H. Kleebe, M. M. Mueller, O. Guillon et al., High-temperature creep behavior of SiOC glass-ceramics: influence of network carbon versus segregated carbon, J. Am. Ceram. Soc, vol.97, issue.12, 2014.

C. Stabler, F. Roth, M. Narisawa, D. Schliephake, M. Heilmaier et al., High-temperature creep behavior of a SiOC glass ceramic free of segregated carbon, J. Eur. Ceram. Soc, vol.36, issue.15, 2016.

C. Stabler, D. Schliephake, M. Heilmaier, T. Rouxel, H. Kleebe et al., Influence of SiC/Silica and Carbon/Silica Interfaces on the High-Temperature Creep of Silicon Oxycarbide-Based Glass Ceramics: A Case Study, Advanced Engineering Materials, vol.1800596, 2018.

A. Makishima and J. D. Mackenzie, Direct calculation of Young's modulus of glass, J. Non-Cryst. Solids, vol.12, issue.1, 1973.

C. Stabler, P. Stein, R. Riedel, E. Ionescu, A. Reitz et al., Thermal Properties of SiOC Glasses and Glass Ceramics at Elevated Temperatures, vol.11, pp.1-18, 2018.

M. Narisawa, S. Watase, K. Matsukawa, T. Dohmaru, and K. Okamura, White Si-O-C(-H) particles with photoluminescence synthesized by decarbonization reaction on polymer precursor in a hydrogen atmosphere, Bull. Chem. Soc. Jpn, vol.85, issue.6

E. Radovanovic, M. F. Gozzi, M. C. Goncalves, and I. V. Yoshida, Silicon oxycarbide glasses from silicone networks, J. Non-Cryst. Solids, vol.248, issue.1, 1999.
DOI : 10.1016/s0022-3093(99)00101-5

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.7, issue.6, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

X. D. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact, vol.48, issue.1, pp.11-36, 2002.

G. M. Pharr, J. H. Strader, and W. C. Oliver, Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement, Journal of Materials Research, vol.24, issue.3, pp.653-666, 2009.

R. Limbach, B. P. Rodrigues, and L. Wondraczek, Strain-rate sensitivity of glasses, Journal of NonCrystalline Solids, vol.404, pp.124-134, 2014.

L. Shen, W. C. Cheong, Y. L. Foo, and Z. Chen, Nanoindentation creep of tin and aluminium: A comparative study between constant load and constant strain rate methods, Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, pp.505-510, 2012.

B. N. Lucas and W. C. Oliver, Indentation Power-Law Creep of High-Purity Indium, Metall. Mater. Trans. A, vol.30, issue.3, 1999.

J. Hay, Introduction to Instrumented Indentation Testing, Exp. Techniques, vol.33, issue.6, 2009.

R. Limbach, A. Winterstein-beckmann, J. Dellith, D. Möncke, and L. Wondraczek, Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior, Journal of Non-Crystalline Solids, pp.15-27, 2015.

J. M. Bind, Phase transformation during hot-pressing of cubic silicon carbide, Mater. Res. Bull

S. Walter, G. D. Soraru, H. Brequel, and S. Enzo, Microstructural and mechanical characterization of sol gel-derived Si-O-C glasses, J. Eur. Ceram. Soc, vol.22, issue.13, pp.537-541, 2002.

T. , Elastic properties and short-to medium-range order in glasses, J. Am. Ceram. Soc, vol.90, issue.10, 2007.

A. J. Stryjak and P. W. Mcmillan, Microstructure and properties of transparent glass-ceramics. Part 2. The physical properties of spinel transparent glass-ceramics, J. Mater. Sci, vol.13, issue.8, 1978.

N. Miyata and H. Jinno, Discussion of the indentation hardness of a glass-ceramic with participate microstructure, Journal of Materials Science, vol.17, issue.9, 1982.

G. D. Soraru, V. M. Sglavo, S. Dirè, G. Andrea, and F. Babonneau, High-Strength, High-Modulus Silicon-Oxycarbide glasses, pp.1157-1162, 1993.

S. Martinez-crespiera, E. Ionescu, H. Kleebe, and R. Riedel, Pressureless synthesis of fully dense and crack-free SiOC bulk ceramics via photo-crosslinking and pyrolysis of a polysiloxane, J. Eur. Ceram. Soc, vol.31, issue.5, 2011.

G. D. Sorarù, L. Kundanati, B. Santhosh, and N. Pugno, Influence of free carbon on the Young's modulus and hardness of polymer-derived silicon oxycarbide glasses, J. Am. Ceram. Soc, vol.0, issue.0, 2018.

S. Spinner and G. W. Cleek, Temperature dependence of Young's modulus of vitreous germania and silica, J. Appl. Phys, vol.31, 1960.

D. J. Lacks, First-Order Amorphous-Amorphous Transformation in Silica, Phys. Rev. Lett, vol.84, issue.20, 2000.

O. Benzine, S. Bruns, Z. Pan, K. Durst, and L. Wondraczek, Local deformation of glasses is mediated by rigidity fluctuation and granularity, Adv. Sci, vol.5, pp.1800916-1800917, 2018.

S. Sawamura and L. Wondraczek, Scratch hardness of glass, Phys. Rev. Mater, 2018.

M. Idriss, F. Celarie, Y. Yokoyama, F. Tessier, and T. Rouxel, Evolution of the elastic modulus of Zr-Cu
URL : https://hal.archives-ouvertes.fr/hal-01150390

, Al BMGs during annealing treatment and crystallization: Role of Zr/Cu ratio, J. Non-Cryst. Solids, vol.421, 2015.

C. A. Angell, Perspective on the glass transition, Journal of Physics and Chemistry of Solids, vol.49, issue.8, pp.90002-90011, 1988.

M. A. Mazo, A. Tamayo, and J. Rubio, Advanced silicon oxycarbide-carbon composites for high temperature resistant friction systems, J. Eur. Ceram. Soc, vol.36, issue.10, 2016.

D. Balzar, N. Audebrand, M. R. Daymond, A. Fitch, A. Hewat et al.,

C. N. Masson, N. C. Mccowan, P. W. Popa, B. H. Stephens, and . Toby, Size-strain line-broadening analysis of the ceria round-robin sample, J. Appl. Crystallogr, vol.37, issue.6, 2004.

H. Brequel, J. Parmentier, G. D. Sorar, L. Schiffini, and S. Enzo, Study of the phase separation in amorphous silicon oxycarbide glasses under heat treatment, Nanostruct. Mater, vol.11, issue.6, 1999.

R. Brueckner, Mechanical properties of glasses, pp.665-713, 1991.

A. Pedone, G. Malavasi, A. N. Cormack, U. Segre, and M. C. Menziani, Insight into Elastic Properties of Binary Alkali Silicate Glasses; Prediction and Interpretation through Atomistic Simulation Techniques, Chem. Mater, vol.19, issue.13, 2007.

Q. Zhao, M. Guerette, and L. Huang, Nanoindentation and Brillouin light scattering studies of elastic moduli of sodium silicate glasses, J. Non-Cryst. Solids, vol.358, issue.3, pp.652-657, 2012.

P. Sellappan, T. Rouxel, F. Celarie, E. Becker, P. Houizot et al., Composition dependence of indentation deformation and indentation cracking in glass, Acta Mater, vol.61, issue.16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01073887

S. Sawamura, R. Limbach, H. Behrens, and L. Wondraczek, Lateral deformation and defect resistance of compacted silica glass: Quantification of the scratching hardness of brittle glasses, J. Non-Cryst. Solids, vol.481, pp.503-511, 2018.

G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Poisson's ratio and modern materials, Nat. Mater, vol.10, issue.11, 2011.

R. Limbach, A. Winterstein-beckmann, J. Dellith, D. Moencke, and L. Wondraczek, Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior, J. Non-Cryst. Solids, vol.417, issue.418, pp.15-27, 2015.

G. L. Paraschiv, S. Gomez, J. C. Mauro, L. Wondraczek, Y. Yue et al., Hardness of Oxynitride Glasses: Topological Origin, J. Phys. Chem. B, vol.119, issue.10, 2015.

W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res, vol.19, issue.1, 2004.

Y. C. Cha, G. Kim, H. J. Doerr, and R. F. Bunshah, Effects of activated reactive evaporation process parameters on the microhardness of polycrystalline silicon carbide thin films, Thin Solid Films, vol.253, issue.1, pp.212-217, 1994.

S. F. Pugh and X. , Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and, Journal of Science, vol.45, issue.367, 1954.

J. J. Lewandowski, W. H. Wang, and A. L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters, vol.85, issue.2, 2005.

B. R. Lawn and D. B. Marshall, Hardness, toughness, and brittleness: an indentation analysis, J. Am. Ceram. Soc, vol.62, issue.7-8

T. To, C. Stabler, E. Ionescu, R. Riedel, F. Célarié et al., Fracture toughness and crack behavior of dense SiOC glass ceramics, Journal of the European Ceramic Society

A. K. Seal, P. Chakraborti, N. R. Roy, S. Mukherjee, M. K. Mitra et al., Effect of phase separation on the fracture toughness of SiO2-B2O3-Na2O glass, Bull. Mater. Sci, vol.28, issue.5, 2005.

S. Deriano, T. Rouxel, M. Lefloch, and B. Beuneu, Structure and mechanical properties of alkalialkaline earth-silicate glasses, Phys. Chem. Glasses, vol.45, issue.1, pp.37-44, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01148113

S. Cheng, C. Song, and P. Ercius, Indentation cracking behaviour and structures of nanophase separation of glasses, Physics and Chemistry of Glasses -European Journal of Glass Science andTechnology Part B, vol.58, issue.6, 2017.

R. Limbach, B. P. Rodrigues, and L. Wondraczek, Strain-rate sensitivity of glasses, J. Non-Cryst. Solids, vol.404, 2014.

D. Peykov, E. Martin, R. R. Chromik, R. Gauvin, and M. Trudeau, Evaluation of strain rate sensitivity by constant load nanoindentation, J. Mater. Sci, vol.47, issue.20, 2012.

A. A. Elmustafa and D. S. Stone, Strain rate sensitivity in nanoindentation creep of hard materials, J. Mater. Res, vol.22, issue.10, pp.2912-2916, 2007.

T. Chudoba and F. Richter, Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results, Surf. Coat. Technol, vol.148, issue.2-3, pp.191-198, 2001.

A. C. Fischer-cripps, A simple phenomenological approach to nanoindentation creep, Mater. Sci. Eng., A, vol.385, issue.1-2, 2004.

H. Meinhard, P. Grau, G. Berg, and S. Mosch, Hardness and flow behavior of glass in the nanometer range. An interpretation of the load dependence of the hardness, Glass Sci. Technol, vol.70, issue.11, pp.333-339, 1997.