H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al 2 O 3

N. Ultra-fine-particles and . Bussei, , vol.7, pp.227-233, 1993.

S. U. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME Int. Mech. Eng. Congr. Expo, vol.66, pp.99-105, 1995.

A. Ghadimi, R. Saidur, and H. S. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transf, vol.54, pp.4051-4068, 2011.

R. Saidur, K. Y. Leong, and H. A. Mohammad, A review on applications and challenges of nanofluids, vol.15, pp.1646-1668, 2011.

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan et al.,

H. Prasher and . Tyagi, Small particles, big impacts: A review of the diverse applications of nanofluids, J. Appl. Phys, vol.113, 2013.

Z. Zhien, C. Jianchao, C. Feng, L. Hao, Z. Wenxian et al., Progress in enhancement of CO 2 absorption by nanofluids: A mini review of mechanisms and current status, Renew. Energy, vol.118, pp.527-535, 2018.

O. Mahian, A. Kianifar, S. Z. Heris, D. Wen, A. Z. Sahin et al., Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger, Nano Energy, vol.36, pp.134-155, 2017.

D. K. Devendiran and V. A. Amirtham, A review on preparation, characterization, properties and applications of nanofluids, Renew. Sustain. Energy Rev, vol.60, 2016.

G. Colangelo, E. Favale, M. Milanese, A. De-risi, and D. Laforgia, Cooling of electronic devices: Nanofluids contribution, Appl. Therm. Eng, vol.127, pp.421-435, 2017.

A. Kasaeian, A. T. Eshghi, and M. Sameti, A review on the applications of nanofluids in solar energy systems, Renew. Sustain. Energy Rev, vol.43, pp.584-598, 2015.

S. Rashidi, O. Mahian, and E. M. Languri, Applications of nanofluids in condensing and evaporating systems: A review, J. Therm. Anal. Calorim, 2017.

S. Rashidi, M. Eskandarian, O. Mahian, and S. Poncet, Combination of nanofluid and inserts for heat transfer enhancement, J. Therm. Anal. Calorim, 2018.

A. Kasaeian, R. D. Azarian, O. Mahian, L. Kolsi, A. J. Chamkha et al., Nanofluid flow and heat transfer in porous media: A review of the latest developments, Int. J. Heat Mass Transf, vol.107, 2017.

M. Ramezanpour and M. Siavashi, Application of SiO 2-water nanofluid to enhance oil recovery: A new hybrid optimization approach using pattern search and PSO algorithms, J. Therm. Anal. Calorim, pp.1-16, 2018.

O. Mahian, A. Kianifar, A. Z. Sahin, and S. Wongwises, Heat Transfer, Pressure Drop, and Entropy Generation in a Solar Collector Using SiO 2 /Water Nanofluids: Effects of Nanoparticle Size and pH, J. Heat Transfer, p.137, 2015.

S. S. Meibodi, A. Kianifar, O. Mahian, and S. Wongwises, Second law analysis of a nanofluid-based solar collector using experimental data, J. Therm. Anal. Calorim, vol.126, pp.617-625, 2016.

A. Kasaeian, S. M. Hosseini, M. Sheikhpour, O. Mahian, W. M. Yan et al., Applications of eco-friendly refrigerants and nanorefrigerants: A review, Renew. Sustain. Energy Rev, vol.96, pp.91-99, 2018.

M. S. Kamel, F. Lezsovits, A. M. Hussein, O. Mahian, and S. Wongwises, Latest developments in boiling critical heat flux using nanofluids: A concise review, Int. Commun. Heat Mass Transf, vol.98, pp.59-66, 2018.

O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transf, vol.57, pp.582-594, 2013.

W. Daungthongsuk and S. Wongwises, A critical review of convective heat transfer of nanofluids, Renew. Sustain. Energy Rev, vol.11, pp.797-817, 2007.

J. Buongiorno, Convective Transport in Nanofluids, J. Heat Transfer, vol.128, p.240, 2006.

, Front matter, pp.11-14, 2017.

M. R. Safaei, A. Jahanbin, A. Kianifar, S. Gharehkhani, A. S. Kherbeet et al., Mathematical Modeling for Nanofluids Simulation: A Review of the Latest Works

, Model. Simul. Eng. Sci, 2016.

M. Bahiraei, A Comprehensive Review on Different Numerical Approaches for Simulation in Nanofluids: Traditional and Novel Techniques, vol.35, pp.984-996, 2014.

N. A. Sidik, M. N. Yazid, S. Samion, M. N. Musa, and R. Mamat, Latest development on computational approaches for nanofluid flow modeling: Navier-Stokes based multiphase models, Int. Commun. Heat Mass Transf, vol.74, pp.114-124, 2016.

S. M. Vanaki, P. Ganesan, and H. A. Mohammed, Numerical study of convective heat transfer of nanofluids: A review, Renew. Sustain. Energy Rev, vol.54, pp.1212-1239, 2016.

S. Kakaç and A. Pramuanjaroenkij, Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids-A state-of-the-art review, Int. J. Therm. Sci, vol.100, pp.75-97, 2016.

G. Ahmadi and J. B. Mclaughlin, Transport, Deposition and Removal of Fine ParticlesBiomedical Applications, Med. Appl. Colloids, pp.92-173, 2008.

J. S. Marshall and S. Li, Adhesive Particle Flow: A Discrete-Element Approach, 2014.

R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles, 1978.

G. Sekrani, S. Poncet, and P. Proulx, Conjugated heat transfer and entropy generation of Al2O3water nanofluid flows over a heated wall-mounted obstacle, J. Therm. Anal. Calorim, 2018.

M. A. Cunningham, On the velocity of steady fall of spherical particles through fluid medium, Proc. R. Soc. London A Math. Phys. Eng. Sci, vol.83, pp.357-365, 1910.

H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. Eng. Sci, vol.16, pp.80035-80038, 1961.

P. G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech, vol.22, pp.385-400, 1965.

P. G. Saffman and C. To, The lift force on a small sphere in a slow shear flow, J. Fluid Mech, 1968.

S. I. Rubinow and J. B. Keller, The transverse force on a spinning sphere moving in a viscous fluid, J. Fluid Mech, vol.11, pp.447-459, 1961.

O. Mahian, A. Kianifar, A. Z. Sahin, and S. Wongwises, Performance analysis of a minichannelbased solar collector using different nanofluids, Energy Convers. Manag, vol.88, pp.129-138, 2014.

R. I. Robert-brown and X. , on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, Philos. Mag, vol.4, pp.161-173, 1827.

E. E. Michaelides, Heat and Mass Transfer in Particulate Suspensions, 2013.

A. Li and G. Ahmadi, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, Aerosol Sci. Technol, vol.16, pp.209-226, 1992.

A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys, vol.322, pp.549-560, 1905.

M. Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys, vol.326, pp.756-780, 1906.

O. Abouali, A. Nikbakht, G. Ahmadi, and S. Saadabadi, Three-dimensional simulation of Brownian motion of nano-particles in aerodynamic lenses, Aerosol Sci. Technol, vol.43, pp.205-215, 2009.

E. E. Michaelides, Transport properties of nanofluids. A critical review, J. Non-Equilibrium Thermodyn, vol.38, pp.1-79, 2013.

P. S. Epstein, Zur Theorie des Radiometers, Zeitschrift Für Phys, vol.54, pp.537-563, 1929.

J. R. Brock, On the theory of thermal forces acting on aerosol particles, J. Colloid Sci, vol.17, pp.768-780, 1962.

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, Thermophoresis of particles in a heated boundary layer, J. Fluid Mech, vol.101, pp.737-758, 1980.

C. He and G. Ahmadi, Particle Deposition with Thermophoresis in Laminar and Turbulent Duct Flows, Aerosol Sci. Technol, vol.29, pp.525-546, 1998.

E. E. Michaelides, Brownian movement and thermophoresis of nanoparticles in liquids, Int. J. Heat Mass Transf, vol.81, pp.179-187, 2015.

S. Savithiri, A. Pattamatta, and S. K. Das, Scaling analysis for the investigation of slip mechanisms in nanofluids, Nanoscale Res. Lett, vol.6, pp.1-15, 2011.

S. Elghobashi, On predicting particle-laden turbulent flows, Appl. Sci. Res, vol.52, pp.309-329, 1994.

C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, Multiphase Flow with Droplets and Particles, p.209, 2011.

C. Tropea, A. L. Yarin, and J. F. Foss, Springer Handbook of Experimental Fluid Mechanics, AIAA J, vol.46, pp.2653-2655, 2007.

J. N. Israelachvili, Intermolecular and Surface Forces: Third Edition, 2011.

D. Guo, G. Xie, and J. Luo, Mechanical properties of nanoparticles: Basics and applications, J. Phys. D. Appl. Phys, vol.47, 2014.

H. C. Hamaker, The London-van der Waals attraction between spherical particles, pp.1058-1072, 1937.

R. Hogg, T. W. Healy, and D. W. Fuerstenau, Mutual coagulation of colloidal dispersions, Trans. Faraday Soc, vol.62, pp.1638-1651, 1966.

J. A. Lewis, Colloidal Processing of Ceramics, J. Am. Ceram. Soc, vol.83, pp.2341-2359

L. P. Aoki, H. E. Schulz, and M. G. Maunsell, An MHD Study of the Behavior of an Electrolyte Solution using 3D Numerical Simulation and Experimental results, Proceeding COMSOL Conf, pp.1-7, 2013.

A. A. Doinikov, Radiation force due to a spherical sound field on a rigid sphere in a viscous fluid, J. Acoust. Soc. Am, vol.96, pp.3100-3105, 1994.

M. Settnes and H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys, vol.85, 2012.

Y. Zhao and J. S. Marshall, Spin coating of a colloidal suspension, Phys. Fluids, vol.20, p.43302, 2008.

J. D. Michaelides and C. T. Crowe, Multiphase Flow Handbook, Second, 2016.

C. Jin, I. Potts, and M. W. Reeks, A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers, Phys. Fluids, p.27, 2015.

K. Khanafer and K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Transf, vol.54, pp.4410-4428, 2011.

J. C. Maxwell, , vol.II, pp.360-366, 1873.

D. A. Bruggema, Berechnung von verschiedener physikalischer Konstanten von Heterogenen Substanzen, Ann. Phys, vol.24, pp.636-664, 1935.

R. L. Hamilton, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam, vol.1, pp.187-191, 1962.

W. Yu and S. U. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, J. Nanoparticle Res, vol.5, pp.167-171, 2003.

Y. Xuan, Q. Li, and W. Hu, Aggregation structure and thermal conductivity of nanofluids, AIChE J, vol.49, pp.1038-1043, 2003.

J. Koo and C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanoparticle Res, vol.6, pp.577-588, 2004.

U. Lee and J. , Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, 2008.

Y. Feng and C. Kleinstreuer, Nanofluid convective heat transfer in a parallel-disk system, Int. J. Heat Mass Transf, vol.53, pp.4619-4628, 2010.

Z. Xu and C. Kleinstreuer, Concentration photovoltaic-thermal energy co-generation system using nanofluids for cooling and heating, Energy Convers. Manag, vol.87, pp.504-512, 2014.

C. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys, vol.81, pp.6692-6699, 1997.

R. Prasher, P. Bhattacharya, and P. E. Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. Rev. Lett, vol.94, 2005.

S. K. Das, H. E. Patel, T. Pradeep, T. Sundararajan, A. Dasgupta et al., A microconvection model for thermal conductivity of nanofluid, Pramana-Journal Phys, vol.65, pp.863-869, 2005.

A. Amiri and K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media, Int. J. Heat Mass Transf, vol.37, pp.939-954, 1994.

K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy-driven heat transfer enhancement in a twodimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf, vol.46, pp.3639-3653, 2003.

Q. Z. Xue, Model for thermal conductivity of carbon nanotube-based composites, Phys. B Condens. Matter, vol.368, pp.302-307, 2005.

H. E. Patel, K. B. Anoop, T. Sundararajan, and S. K. Das, Model for thermal conductivity of CNTnanofluids, Bull. Mater. Sci, pp.387-390, 2008.

C. Nan, G. Liu, Y. Lin, and M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett, vol.85, pp.3549-3551, 2004.

B. Lamas, B. Abreu, A. Fonseca, N. Martins, and M. Oliveira, Critical analysis of the thermal conductivity models for CNT based nanofluids, Int. J. Therm. Sci, vol.78, pp.65-76, 2014.

S. M. Murshed, K. C. Leong, and C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci, vol.47, pp.560-568, 2008.

S. M. Murshed, C. A. Nieto-de, and . Castro, Superior thermal features of carbon nanotubes-based nanofluids-A review, Renew. Sustain. Energy Rev, vol.37, pp.155-167, 2014.

P. Estellé, S. Halelfadl, and T. Maré, Thermal Conductivity of CNT Water Based Nanofluids: Experimental Trends and Models Overview, J. Therm. Enginnering, vol.1, pp.381-390, 2015.

S. E. Bécaye-maïga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, vol.26, pp.530-546, 2005.

M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, Int. J. Therm. Sci, vol.49, pp.1536-1546, 2010.

C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2 O 3 ) thermal conductivity enhancement, Appl. Phys. Lett, vol.87, pp.1-3, 2005.

C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, Int. J. Therm. Sci, vol.49, pp.1345-1353, 2010.

K. Sharma, P. K. Sarma, W. H. Azmi, R. Mamat, and K. Kadirgama, Correlations To Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube, Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenomena, Suppl. Spec. Issue Heat Mass Transf. Nanofluids, vol.3, pp.283-307, 2012.

W. H. Azmi, K. V. Sharma, R. Mamat, and S. Anuar, Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube, Energy Procedia, pp.296-307, 2014.

G. Zy?a and J. Fal, Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride-ethylene glycol (AlN-EG) nanofluids, Thermochim. Acta, vol.637, pp.11-16, 2016.

G. Zy?a, Thermophysical properties of ethylene glycol based yttrium aluminum garnet (Y 3 Al 5 O 12-EG) nanofluids, Int. J. Heat Mass Transf, vol.92, pp.751-756, 2016.

G. ?y?a and J. Fal, Viscosity, thermal and electrical conductivity of silicon dioxide-ethylene glycol transparent nanofluids: An experimental studies, Thermochim. Acta, vol.650, pp.106-113, 2017.

G. ?y?a, J. Fal, J. Traciak, M. Gizowska, and K. Perkowski, Huge thermal conductivity enhancement in boron nitride-ethylene glycol nanofluids, Mater. Chem. Phys, vol.180, pp.250-255, 2016.

G. ?y?a, J. Fal, and P. Estellé, The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids, Diam. Relat. Mater, vol.74, pp.81-89, 2017.

G. ?y?a, J. Fal, and P. Estellé, Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN-EG) nanofluids with various size of particles, Int. J. Heat Mass Transf, vol.113, pp.1189-1199, 2017.

G. ?y?a, J. P. Vallejo, J. Fal, and L. Lugo, Nanodiamonds-Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties, Int. J. Heat Mass Transf, vol.121, pp.1201-1213, 2018.

M. H. Ahmadi, M. A. Ahmadi, M. A. Nazari, O. Mahian, and R. Ghasempour, A proposed model to predict thermal conductivity ratio of Al 2 O 3 /EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach, J. Therm. Anal. Calorim, 2018.

M. Hemmat-esfe, S. Saedodin, M. Bahiraei, D. Toghraie, O. Mahian et al., Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network, J. Therm. Anal. Calorim, vol.118, 2014.

M. Hemmat-esfe, P. M. Behbahani, A. A. Arani, and M. R. Sarlak, Thermal conductivity enhancement of SiO 2-MWCNT (85:15 %)-EG hybrid nanofluidss: ANN designing, experimental investigation, cost performance and sensitivity analysis, J. Therm. Anal. Calorim, vol.128, pp.249-258, 2017.

M. Hemmat-esfe, H. Rostamian, D. Toghraie, and W. Yan, Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle, J. Therm. Anal. Calorim, pp.1-6, 2016.

M. Vakili, M. Karami, S. Delfani, S. Khosrojerdi, and K. Kalhor, Experimental investigation and modeling of thermal conductivity of CuO-water/EG nanofluid by FFBP-ANN and multiple regressions, J. Therm. Anal. Calorim, vol.129, pp.629-637, 2017.

M. H. Esfe, S. Saedodin, O. Mahian, and S. Wongwises, Thermal conductivity of Al 2 O 3 /water nanofluids: Measurement, correlation, sensitivity analysis, and comparisons with literature reports, J. Therm. Anal. Calorim, vol.117, 2014.

M. Hemmat-esfe, S. Saedodin, O. Mahian, and S. Wongwises, Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids, Int. Commun. Heat Mass Transf, vol.58, 2014.

M. Hemmat-esfe, S. Saedodin, O. Mahian, and S. Wongwises, Heat transfer characteristics and pressure drop of of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations, Int. J. Heat Mass Transf, vol.73, 2014.

M. Amani, P. Amani, A. Kasaeian, O. Mahian, and S. Wongwises, Thermal conductivity measurement of spinel-type ferrite MnFe 2 O 4 nanofluids in the presence of a uniform magnetic field, J. Mol. Liq, vol.230, pp.121-128, 2017.

M. Amani, P. Amani, A. Kasaeian, O. Mahian, I. Pop et al., Modeling and optimization of thermal conductivity and viscosity of MnFe 2 O 4 nanofluid under magnetic field using an, ANN, Sci. Rep, vol.7, p.17369, 2017.

S. M. Murshed, K. C. Leong, and C. Yang, Enhanced thermal conductivity of TiO 2-Water based nanofluids, Int. J. Therm. Sci, vol.44, pp.367-373, 2005.

A. Turgut, I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter et al., Thermal Conductivity and Viscosity Measurements of Water-Based TiO 2 Nanofluids, Int. J

. Thermophys, , vol.30, pp.1213-1226, 2009.

S. Wang, Y. Li, H. Zhang, Y. Lin, Z. Li et al., Enhancement of thermal conductivity in water-based nanofluids employing TiO 2 reduced graphene oxide composites, J. Mater. Sci, vol.51, pp.10104-10115, 2016.

M. Zadkhast, D. Toghraie, and A. Karimipour, Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation, J. Therm. Anal. Calorim, vol.129, pp.859-867, 2017.

P. K. Singh, D. Khandelwal, C. Sidhant, A. Shubham, N. Priyanshu et al., Nanofluid heat transfer mechanism and thermo-physical properties: A review, Int. J. Mech. Eng. Technol, vol.8, pp.156-164, 2017.

K. Y. Leong, K. Z. Ku-ahmad, H. C. Ong, M. J. Ghazali, and A. Baharum, Synthesis and thermal conductivity characteristic of hybrid nanofluids-A review, Renew. Sustain. Energy Rev, vol.75, pp.868-878, 2017.

A. Kotia, S. Borkakoti, P. Deval, and S. K. Ghosh, Review of interfacial layer's effect on thermal conductivity in nanofluid, Heat Mass Transf. Und Stoffuebertragung, vol.53, pp.2199-2209, 2017.

M. I. Pryazhnikov, A. Minakov, V. Y. Rudyak, and D. Guzei, Thermal conductivity measurements of nanofluids, Int. J. Heat Mass Transf, vol.104, pp.1275-1282, 2017.

P. C. Mishra, S. K. Nayak, and S. Mukherjee, Thermal Conductivity of Nanofluids-An Extensive Literature Review, Int. J. Eng. Res. Technol, vol.2, pp.734-745, 2013.

H. Younes, G. Christensen, D. Li, H. Hong, and A. A. Ghaferi, Thermal Conductivity of Nanofluids: Review, J. Nanofluids, vol.4, pp.107-132, 2015.

P. M. Kumar, J. Kumar, R. Tamilarasan, S. Sendhilnathan, and S. Suresh, Review on nanofluids theoretical thermal conductivity models, Eng. J, vol.19, pp.67-83, 2015.

S. A. Angayarkanni and J. Philip, Review on thermal properties of nanofluids: Recent developments, Adv. Colloid Interface Sci, vol.225, pp.146-176, 2015.

M. H. Ahmadi, A. Mirlohi, M. A. Nazari, and R. Ghasempour, A review of thermal conductivity of various nanofluids, J. Mol. Liq, vol.265, pp.181-188, 2018.

C. Kleinstreuer and Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Res. Lett, vol.6, p.439, 2011.

H. C. Birkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys, vol.20, p.571, 1952.

I. M. Krieger and T. J. Dougherty, A Mechanism for NonNewtonian Flow in Suspensions of Rigid Spheres, Trans. Soc. Rheol, vol.3, pp.137-152, 1959.

S. H. Maron and P. E. Pierce, Application of ree-eyring generalized flow theory to suspensions of spherical particles, J. Colloid Sci, vol.11, pp.80-95, 1956.

S. Halelfadl, P. Estellé, B. Aladag, N. Doner, and T. Maré, Viscosity of carbon nanotubes waterbased nanofluids: Influence of concentration and temperature, Int. J. Therm. Sci, vol.71, pp.111-117, 2013.

H. Chen, Y. Ding, and C. Tan, Rheological behaviour of nanofluids, New J. Phys, vol.9, 2007.

J. Chevalier, O. Tillement, and F. Ayela, Structure and rheology of SiO 2 nanoparticle suspensions under very high shear rates, Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys, vol.80, 2009.

N. Masoumi, N. Sohrabi, and A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, J. Phys. D. Appl. Phys, vol.42, 2009.

P. K. Singh, K. B. Anoop, T. Sundararajan, and S. K. Das, Entropy generation due to flow and heat transfer in nanofluids, Int. J. Heat Mass Transf, vol.53, pp.4757-4767, 2010.

U. Rea, T. Mckrell, L. Wen-hu, and J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids, Int. J. Heat Mass Transf, vol.52, pp.2042-2048, 2009.

W. Williams, J. Buongiorno, and L. Hu, Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes, J. Heat Transfer, vol.130, p.42412, 2008.

S. P. Jang, J. H. Lee, K. S. Hwang, and S. U. Choi, Particle concentration and tube size dependence of viscosities of Al 2 O 3-water nanofluids flowing through micro-and minitubes, Appl. Phys. Lett, p.91, 2007.

K. Bashirnezhad, S. Bazri, M. R. Safaei, M. Goodarzi, M. Dahari et al., Viscosity of nanofluids: A review of recent experimental studies, Int. Commun. Heat Mass Transf, vol.73, pp.114-123, 2016.

S. M. Murshed and P. Estellé, A state of the art review on viscosity of nanofluids, Renew. Sustain. Energy Rev, vol.76, pp.1134-1152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01500498

J. P. Meyer, S. A. Adio, M. Sharifpur, and P. N. Nwosu, The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models, Heat Transf. Eng, vol.37, pp.387-421, 2016.

H. D. Koca, S. Doganay, A. Turgut, I. H. Tavman, R. Saidur et al., Effect of particle size on the viscosity of nanofluids: A review, vol.82, pp.1664-1674, 2018.

M. Amani, P. Amani, A. Kasaeian, O. Mahian, F. Kasaeian et al., Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field, J. Magn. Magn. Mater, vol.428, pp.457-463, 2017.

T. Yiamsawas, A. S. Dalkilic, O. Mahian, and S. Wongwises, Measurement and Correlation of the Viscosity of Water-Based Al 2 O 3 and TiO 2 Nanofluids in High Temperatures and Comparisons with Literature Reports, J. Dispers. Sci. Technol, vol.34, pp.1697-1703, 2013.

T. Yiamsawas, O. Mahian, A. S. Dalkilic, S. Kaewnai, and S. Wongwises, Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications, Appl. Energy, vol.111, pp.40-45, 2013.

G. M. Moldoveanu, A. A. Minea, M. Iacob, C. Ibanescu, and M. Danu, Experimental study on viscosity of stabilized Al 2 O 3 , TiO 2 nanofluids and their hybrid, Thermochim. Acta, vol.659, 2018.

G. M. Moldoveanu, C. Ibanescu, M. Danu, and A. A. Minea, Viscosity estimation of Al 2 O 3 , SiO 2 nanofluids and their hybrid: An experimental study, J. Mol. Liq, vol.253, 2018.

G. Zy?a and M. Cholewa, On unexpected behavior of viscosity of diethylene glycol-based MgAl2O4nanofluids, vol.4, pp.26057-26062, 2014.

O. Mahian, A. Kianifar, C. Kleinstreuer, M. A. Al-nimr, I. Pop et al., A review of entropy generation in nanofluid flow, Int. J. Heat Mass Transf, vol.65, 2013.

P. Estellé, D. Cabaleiro, G. ?y?a, L. Lugo, and S. M. Murshed, Current trends in surface tension and wetting behavior of nanofluids, Renew. Sustain. Energy Rev, vol.94, pp.931-944, 2018.

N. Ahammed, L. G. Asirvatham, and S. Wongwises, Effect of volume concentration and temperature on viscosity and surface tension of graphene-water nanofluid for heat transfer applications, J. Therm. Anal. Calorim, vol.123, 2016.

D. Cabaleiro, P. Estellé, H. Navas, A. Desforges, and B. Vigolo, Dynamic Viscosity and Surface Tension of Stable Graphene Oxide and Reduced Graphene Oxide Aqueous Nanofluids, J. Nanofluids, vol.7, pp.1081-1088, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01820859

J. Chinnam, D. K. Das, R. S. Vajjha, and J. R. Satti, Measurements of the surface tension of nanofluids and development of a new correlation, Int. J. Therm. Sci, vol.98, pp.68-80, 2015.

O. Mahian, A. Kianifar, A. Z. Sahin, and S. Wongwises, Entropy generation during Al 2 O 3 /water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models, Int. J. Heat Mass Transf, vol.78, 2014.

O. Mahian, S. Mahmud, and S. Z. Heris, Effect of Uncertainties in Physical Properties on Entropy Generation Between Two Rotating Cylinders With Nanofluids, J. Heat Transfer, vol.134, p.101704, 2012.

O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study, Int. J. Heat Mass Transf, vol.99, 2016.

E. Abu-nada and A. J. Chamkha, Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid, Int. J. Therm. Sci, vol.49, pp.2339-2352, 2010.

E. Abu-nada, Effects of variable viscosity and thermal conductivity of Al 2 O 3-water nanofluid on heat transfer enhancement in natural convection, Int. J. Heat Fluid Flow, vol.30, pp.679-690, 2009.

G. Saha and M. C. Paul, Investigation of the characteristics of nanofluids flow and heat transfer in a pipe using a single phase model, Int. Commun. Heat Mass Transf, vol.93, pp.48-59, 2018.

H. Demir, A. S. Dalkilic, N. A. Kürekci, W. Duangthongsuk, and S. Wongwises, Numerical investigation on the single phase forced convection heat transfer characteristics of TiO 2 nanofluids in a double-tube counter flow heat exchanger, Int. Commun. Heat Mass Transf, vol.38, pp.218-228, 2011.

P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci, vol.48, pp.290-302, 2009.

M. K. Moraveji, M. Darabi, S. M. Haddad, and R. Davarnejad, Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics, Int. Commun. Heat Mass Transf, vol.38, pp.1291-1295, 2011.

O. Manca, S. Nardini, and D. Ricci, A numerical study of nanofluid forced convection in ribbed channels, Appl. Therm. Eng, vol.37, pp.280-292, 2012.

M. A. Ahmed, M. M. Yaseen, and M. Z. Yusoff, Numerical study of convective heat transfer from tube bank in cross flow using nanofluid, Case Stud, Therm. Eng, vol.10, pp.560-569, 2017.

R. S. Vajjha, D. K. Das, and P. K. Namburu, Numerical study of fluid dynamic and heat transfer performance of Al 2 O 3 and CuO nanofluids in the flat tubes of a radiator, Int. J. Heat Fluid Flow, vol.31, pp.613-621, 2010.

O. Abouali and G. Ahmadi, Computer simulations of natural convection of single phase nanofluids in simple enclosures: A critical review, Appl. Therm. Eng, vol.36, pp.1-13, 2012.

Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf, vol.43, pp.3701-3707, 2000.
DOI : 10.1016/s0017-9310(99)00369-5

M. S. Mojarrad, A. Keshavarz, and A. Shokouhi, Nanofluids thermal behavior analysis using a new dispersion model along with single-phase, Heat Mass Transf. Und Stoffuebertragung, p.49, 2013.
DOI : 10.1007/s00231-013-1182-3

M. Bahiraei and S. M. Hosseinalipour, Thermal Dispersion Model Compared with Euler-Lagrange Approach in Simulation of Convective Heat Transfer for Nanoparticle Suspensions, J. Dispers

, Sci. Technol, vol.34, pp.1778-1789, 2013.

M. Amani, P. Amani, A. Kasaeian, O. Mahian, and W. Yan, Two-phase mixture model for nanofluid turbulent flow and heat transfer: Effect of heterogeneous distribution of nanoparticles, Chem. Eng. Sci, vol.167, 2017.

Y. Ding and D. Wen, Particle migration in a flow of nanoparticle suspensions, Powder Technol, vol.149, pp.84-92, 2005.

S. Kumar, S. K. Prasad, and J. Banerjee, Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model, Appl. Math. Model, vol.34, pp.573-592, 2010.

S. Özerinç, A. G. Yazcoglu, and S. Kakaç, Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion, Int. J. Therm. Sci, pp.138-148, 2012.

S. Z. Heris, M. N. Esfahany, and G. Etemad, Numerical investigation of nanofluid laminar convective heat transfer through a circular tube, Numer. Heat Transf. Part A Appl, vol.52, pp.1043-1058, 2007.

M. Ameri, M. Amani, and P. Amani, Thermal performance of nanofluids in metal foam tube: Thermal dispersion model incorporating heterogeneous distribution of nanoparticles, Adv. Powder Technol, vol.28, pp.2747-2755, 2017.

M. Bahiraei and S. I. Vasefi, A novel thermal dispersion model to improve prediction of nanofluid convective heat transfer, Adv. Powder Technol, vol.25, pp.1772-1779, 2014.

M. Bahiraei and S. M. Hosseinalipour, Accuracy enhancement of thermal dispersion model in prediction of convective heat transfer for nanofluids considering the effects of particle migration, Korean J. Chem. Eng, vol.30, pp.1552-1558, 2013.

F. Akbaridoust, M. Rakhsha, A. Abbassi, and M. Saffar-avval, Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model, Int. J. Heat Mass Transf, vol.58, pp.480-491, 2013.

M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, J. Magn. Magn. Mater, vol.416, pp.164-173, 2016.
DOI : 10.1016/j.jmmm.2016.05.026

M. Sheikholeslami and H. B. Rokni, Effect of melting heat transfer on nanofluid flow in existence of magnetic field considering Buongiorno Model, Chinese J. Phys, vol.55, pp.1115-1126, 2017.

F. Garoosi, L. Jahanshaloo, M. M. Rashidi, A. Badakhsh, and M. E. Ali, Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model, Appl. Math

. Comput, , vol.254, pp.183-203, 2015.

F. Garoosi, S. Garoosi, and K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder Technol, vol.268, pp.279-292, 2014.

A. Malvandi, S. A. Moshizi, E. G. Soltani, and D. D. Ganji, Modified Buongiorno's model for fully developed mixed convection flow of nanofluids in a vertical annular pipe, Comput. Fluids, vol.89, pp.124-132, 2014.

A. Malvandi and D. D. Ganji, Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel, Powder Technol, vol.263, pp.37-44, 2014.

N. Shehzad, A. Zeeshan, R. Ellahi, and K. Vafai, Convective heat transfer of nanofluid in a wavy channel: Buongiorno's mathematical model, J. Mol. Liq, vol.222, pp.446-455, 2016.

M. A. Sheremet and I. Pop, Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno's mathematical model, Int. J. Heat Mass Transf, vol.79, pp.137-145, 2014.

Z. Zhang and Q. Chen, Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces, Atmos. Environ, vol.41, pp.5236-5248, 2007.

S. Kakaç and A. Pramuanjaroenkij, Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments, J. Eng. Phys. Thermophys, vol.89, pp.758-793, 2016.

M. Akbari, N. Galanis, and A. Behzadmehr, Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer, Int. J. Therm. Sci, vol.50, pp.1343-1354, 2011.

P. Naphon and L. Nakharintr, Turbulent two phase approach model for the nanofluids heat transfer analysis flowing through the minichannel heat sinks, Int. J. Heat Mass Transf, vol.82, pp.388-395, 2015.

M. M. Rashidi, A. Hosseini, I. Pop, S. Kumar, and N. Freidoonimehr, Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel, Appl. Math. Mech. (English Ed, vol.35, pp.831-848, 2014.

R. Davarnejad and M. Jamshidzadeh, CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow, Eng. Sci. Technol. an Int. J, vol.18, pp.536-542, 2015.

M. Manninen, V. Taivassalo, and S. Kallio, On the mixture model for multiphase flow, pp.1-67, 1996.

L. Schiller and Z. Naumann, A drag coefficient correlation, Z.Ver.Deutsch.Ing, vol.77, pp.318-320, 1933.

S. A. Morsi and A. J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech, vol.55, pp.193-208, 1972.

M. N. Labib, M. J. Nine, H. Afrianto, H. Chung, and H. Jeong, Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer, Int. J. Therm. Sci, vol.71, pp.163-171, 2013.

H. Safikhani, A. Abbassi, A. Khalkhali, and M. Kalteh, Modeling and Optimization of Nanofluid Flow in Flat Tubes Using a Combination of CFD and Response Surface Methodology, Heat Transf. Res, 2014.

A. Moghadassi, E. Ghomi, and F. Parvizian, A numerical study of water based Al 2 O 3 and Al 2 O 3-Cu hybrid nanofluid effect on forced convective heat transfer, Int. J. Therm. Sci, vol.92, pp.50-57, 2015.

S. Mirmasoumi and A. Behzadmehr, Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Appl. Therm. Eng, vol.28, pp.717-727, 2008.

M. Goodarzi, M. R. Safaei, K. Vafai, G. Ahmadi, M. Dahari et al., Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model, Int. J. Therm. Sci, vol.75, pp.204-220, 2014.

M. Siavashi and M. Jamali, Heat transfer and entropy generation analysis of turbulent flow of TiO 2water nanofluid inside annuli with different radius ratios using two-phase mixture model, Appl. Therm. Eng, vol.100, pp.1149-1160, 2016.

M. Siavashi, H. R. Bahrami, and H. Saffari, Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model, p.93, 2015.

M. Siavashi, H. R. Bahrami, and E. Aminian, Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams, Appl. Therm. Eng, vol.138, pp.465-474, 2018.

M. Siavashi, H. R. Bahrami, and H. Saffari, Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model, Numer. Heat Transf. Part A Appl, vol.71, pp.1251-1273, 2017.

M. H. Toosi and M. Siavashi, Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer, J. Mol. Liq, vol.238, pp.553-569, 2017.

R. Y. Emami, M. Siavashi, G. Shahriari, and . Moghaddam, The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity, Adv. Powder Technol, vol.29, pp.519-536, 2018.

M. Siavashi, R. Yousofvand, and S. Rezanejad, Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity, Adv. Powder Technol, vol.29, pp.142-156, 2018.

M. Siavashi and A. Rostami, Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media, Int. J. Mech. Sci, vol.133, pp.689-703, 2017.

M. K. Moraveji and R. M. Ardehali, CFD modeling (comparing single and two-phase approaches) on thermal performance of Al 2 O 3 /water nanofluid in mini-channel heat sink, Int. Commun. Heat Mass Transf, vol.44, pp.157-164, 2013.

M. Shariat, R. M. Moghari, A. Akbarinia, R. Rafee, and S. M. Sajjadi, Impact of nanoparticle mean diameter and the buoyancy force on laminar mixed convection nanofluid flow in an elliptic duct employing two phase mixture model, Int. Commun. Heat Mass Transf, vol.50, pp.15-24, 2014.

P. Maghsoudi and M. Siavashi, Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity, J. Therm. Anal. Calorim, pp.1-15, 2018.

R. M. Mourad-rebay and S. Kakaç, Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application, 2016.

C. Y. Wen and Y. H. Yu, Mechanics of fluidization, Chem. Eng. Progress, Symp. Ser, vol.62, pp.100-111, 1966.

M. Kalteh, A. Abbassi, M. Saffar-avval, and J. Harting, Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, Int. J. Heat Fluid Flow, vol.32, pp.107-116, 2011.

W. E. Ranz and W. R. Marshall, Evaporation from drops-Part 1, Chem. Eng. Prog, vol.48, pp.141-148, 1952.

O. A. Beg, M. M. Rashidi, M. Akbari, and A. Hosseini, Comparative Numerical Study of SinglePhase and Two-Phase Models for Bio-Nanofluid Transport Phenomena, J. Mech. Med. Biol, vol.14, p.1450011, 2014.

R. Lotfi, Y. Saboohi, and A. M. Rashidi, Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, Int. Commun. Heat Mass Transf, vol.37, pp.74-78, 2010.

M. Hejazian, M. K. Moraveji, and A. Beheshti, Comparative study of Euler and mixture models for turbulent flow of Al 2 O 3 nanofluid inside a horizontal tube, Int. Commun. Heat Mass Transf, vol.52, pp.152-158, 2014.

A. Sabaghan, M. Edalatpour, M. C. Moghadam, E. Roohi, and H. Niazmand, Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation, Appl. Therm. Eng, vol.100, pp.179-189, 2016.

E. Ebrahimnia-bajestan, M. C. Moghadam, H. Niazmand, W. Daungthongsuk, and S. Wongwises, Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers, Int. J. Heat Mass Transf, vol.92, pp.1041-1052, 2016.

I. Behroyan, P. Ganesan, S. He, and S. Sivasankaran, Turbulent forced convection of Cu-water nanofluid: CFD model comparison, Int. Commun. Heat Mass Transf, vol.67, pp.163-172, 2015.

S. Rashidi, J. A. Esfahani, and R. Ellahi, Convective heat transfer and particle motion in an obstructed duct with two side by side obstacles by means of DPM model, Appl. Sci, vol.7, 2017.

Y. He, Y. Men, Y. Zhao, H. Lu, and Y. Ding, Numerical investigation into the convective heat transfer of TiO 2 nanofluids flowing through a straight tube under the laminar flow conditions, Appl. Therm. Eng, vol.29, pp.1965-1972, 2009.

V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, Numerical investigation of nanofluids forced convection in circular tubes, Appl. Therm. Eng, vol.29, pp.3632-3642, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00573480

M. Bahiraei, A numerical study of heat transfer characteristics of CuO-water nanofluid by Euler-Lagrange approach, J. Therm. Anal. Calorim, vol.123, pp.1591-1599, 2016.

M. Bahiraei, Studying nanoparticle distribution in nanofluids considering the effective factors on particle migration and determination of phenomenological constants by Eulerian-Lagrangian simulation, Adv. Powder Technol, vol.26, pp.802-810, 2015.

N. Kumar and B. P. Puranik, Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach, Appl. Therm. Eng, 2016.

M. Bahiraei, M. Hangi, and A. Monavari, Assessment of hydrothermal characteristics of Mn-Zn ferrite nanofluid as a functional material under quadrupole magnetic field, Powder Technol, vol.305, pp.174-182, 2017.

S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, Numerical study on the convective heat transfer of nanofluid in a triangular minichannel heat sink using the Eulerian-Eulerian two-phase model, Numer. Heat Transf. Part A Appl, vol.72, pp.185-196, 2017.

S. Sonawane, U. Bhandarkar, and B. Puranik, Modeling Forced Convection Nanofluid Heat Transfer Using an Eulerian-Lagrangian Approach, J. Therm. Sci. Eng. Appl, vol.8, p.31001, 2016.

J. Rostami and A. Abbassi, Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian-Lagrangian method, Adv. Powder Technol, vol.27, pp.9-18, 2016.

S. Rashidi, M. Bovand, J. Abolfazli-esfahani, and G. Ahmadi, Discrete particle model for convective AL 2 O 3-water nanofluid around a triangular obstacle, Appl. Therm. Eng, vol.100, pp.39-54, 2016.

M. Bovand, S. Rashidi, G. Ahmadi, and J. A. Esfahani, Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow-A two-way coupling of Eulerian-Lagrangian model, Appl. Therm. Eng, vol.108, pp.368-377, 2016.

M. K. Moraveji and E. Esmaeili, Comparison between single-phase and two-phases CFD modeling of laminar forced convection flow of nanofluids in a circular tube under constant heat flux, Int. Commun. Heat Mass Transf, vol.39, pp.1297-1302, 2012.

M. Akbari, N. Galanis, and A. Behzadmehr, Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection, Int. J. Heat Fluid Flow, vol.37, pp.136-146, 2012.

A. Albojamal and K. Vafai, Analysis of single phase, discrete and mixture models, in predicting nanofluid transport, Int. J. Heat Mass Transf, vol.114, pp.225-237, 2017.

M. Bahiraei, A numerical study of heat transfer characteristics of CuO-water nanofluid by Euler-Lagrange approach, J. Therm. Anal. Calorim, vol.123, pp.1591-1599, 2016.

S. Göktepe, K. Atal?k, and H. Ertürk, Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube, Int. J. Therm. Sci, vol.80, pp.83-92, 2014.

M. Hejazian and M. K. Moraveji, A Comparative Analysis of Single and Two-Phase Models of Turbulent Convective Heat Transfer in a Tube for TiO 2 Nanofluid with CFD, Numer. Heat Transf. Part A Appl, vol.63, pp.795-806, 2013.

M. Hejazian, M. K. Moraveji, and A. Beheshti, Comparative Numerical Investigation on TiO 2 /Water Nanofluid Turbulent Flow by Implementation of Single Phase and Two Phase Approaches, Numer. Heat Transf. Part A Appl, vol.66, pp.330-348, 2014.

M. Haghshenas-fard, M. N. Esfahany, and M. R. Talaie, Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model, Int. Commun. Heat Mass Transf, vol.37, pp.91-97, 2010.