, 97 (s, 1H), 8.30 (d, J = 5.2 Hz, 1H), 8.19 (dd, J = 7.8, 1.0 Hz, 1H), 7.46 (m, 2H), 7.39 (dd, J = 7.4, 1.1 Hz, 1H), Purification by flash chromatography on silica gel using (CH 2 Cl 2 /MeOH 98:2, v/v) gave the urea (±)-47 (126 mg) as an off-white solid in 92% yield. 1 H NMR (300 MHz, DMSO) ? 10.67 (s, 1H), vol.9, p.692

, Purification by flash chromatography on silica gel using (CH 2 Cl 2 /MeOH 98:2, v/v) gave the urea (R)-47 (87 mg) as an off-white solid in 73% yield. NMR and MS spectra were in accordance with those reported above

, The organic phase was dried over MgSO 4 , filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (CH 2 Cl 2 /EtOAc 90/10, v/v) to afford 42 as a pink solid in 48% yield (237 mg). 1 H NMR (300 MHz, Water was added, and the product was extracted with CH 2 Cl 2 (x2)

, 07 (s, 1H), 8.43 (dd, J = 5.0, 0.6 Hz, 1H), 8.01 (dd, J = 1.7, 0.6 Hz, 1H), 7.30 (dd, General procedure A was followed, using methyl ester 42 (237 mg, 1.25 mmol), to give 44 as a beige solid (114 mg) in 99% yield. 1 H NMR (300 MHz

, But-3-yn-1-yl)picolinoyl azide (46)

, General procedure B was followed, using acyl hydrazine 44 (223 mg) to give the desired acyl azide 46 (196 mg) as a white solid in 83% yield. 1 H NMR (300 MHz

, Hz, 1H), 2.91 (t, J = 7.1 Hz, 2H), 2.55 (td, J = 7.1, 2.6 Hz, 2H), 1.98 (t, J = 2.6 Hz, 1H). 13 C NMR (75 MHz, Hz, 1H), 8.03 (d, J = 1.0 Hz, 1H), 7.42 (dd, J = 4, vol.9

, 2.76 (d, J = 10.3 Hz, 1H), 2.61 (t, J = 5.9 Hz, 2H), 1.99 (d, J = 13.8 Hz, 1H), 1.88 -1.79(m, 6H), 1.79 -1.59 (m, 1H), 1.49 -1.37 (m, 1H), 1.04 (dd, J = 22.2, 12.2 Hz, 1H). 13 C NMR (75 MHz, 3.98 -3.93 (m, 2H), 2.98 (m, 7H)

, General procedure D was followed, using the alkyne (±)-47 (97 mg, 0.28 mmol) and azide 14

, 01 (s, 1H), 8.62 (s, 1H), 8.32 (d, J = 5.4 Hz, 1H), 8.25 (d, J = 7.3 Hz, 1H), 8.04 -7.94 (m, 1H), 7.80 (s, 1H), 7.72 (d, Purification by flash chromatography on silica gel (CH 2 Cl 2 /MeOH/NH 4 OH 97:3:1, v/v/v) gave the desired compound (±)-6 (30 mg) as an off-white solid in 18% yield. 1 H NMR (300 MHz, DMSO) ? 11.06 (bs, 1H), vol.10

, General procedure B was followed using acyl hydrazine 55 (572 mg, 3.55 mmol) to give the desired acyl azide 57 (588 mg) as an off-white solid in 96% yield. 1 H NMR (300 MHz, vol.3

, 1H), 8.35 (t, J = 2.0 Hz, 1H), 3.30 (s, 1H). 13 C NMR (75 MHz

, General procedure C was followed, using the acyl azide 57 (68 mg, 0.44 mmol) and tetrahydropyrido

, Purification by flash chromatography on silica gel using (CH 2 Cl 2 /MeOH/NH 4 OH 96:4:1, v/v/v) gave the urea (±)-59 (81 mg) as a white solid in 65% yield. 1 H NMR (300 MHz, vol.3

, J = 12.0, 1H), 2.59 (d, J = 10.4 Hz, 1H), 1.84 (dd, J = 26.3, 13.0 Hz, 3H), 1.50 (m, 1H), 1.34 (m, 1H), 1.00 (m, 1H). 13 C NMR (75 MHz, p.347

, Hz, 1H), 7.84 (t, J = 7.8 Hz, 1H), vol.7, p.61

, General procedure B was followed, using acyl hydrazine 56 (550 mg, 3.41 mmol), to give the desired acyl azide 58 (534 mg) as an off-white solid in 91% yield. 1 H NMR (300 MHz, vol.3

J. Dd, 0.9 Hz, 1H), vol.7, p.11

, 44 mmol) and tetrahydropyrido[2,1-a]isoindolone (±)-24 (80 mg, 0.44 mmol). Purification by flash chromatography using (CH 2 Cl 2 /MeOH/NH 4 OH 96:4:1, v/v/v) gave the urea (±)-60 (81 mg) as a white solid in 50% yield

, = 7.5 Hz, 1H), 7.80 (t, J = 7.8 Hz, 1H)

. Hz,

. Mhz,

, The purification by flash chromatography (CH 2 Cl 2 /MeOH/NH 4 OH 97:3:1, v/v/v) gave the desired compound (±)-7 as white off solid (65 mg) in 81% yield. 1 H NMR (300 MHz, DMSO) ? 9

, 2H), 2.64 -2.57 (m, 3H), 1.90 (d, J = 13.2 Hz, 1H)

. Mhz,

, HRMS (ESI+) calcd for C 35 H 36 N 9 O 2 614.2914, found 614.2991. HPLC: t R = 21

, The general procedure D was followed by using the alkyne (±)-60 (45 mg, 0.13 mmol) and azide 14 (34 mg, 0.13 mmol). The purification by flash chromatography on silica gel (CH 2 Cl 2 /MeOH/NH 4 OH 95:5:1, v/v/v) gave the desired compound (±)-8 as yellow solid

. Huh7, Cells were grown at 37 °C, 5% CO 2 in ECACC recommended media: DMEM for HuH7 and MDA-MB-231, EMEM for MCF7 and CaCo-2, McCoy's for HCT116, and RPMI for PC3 and NCI-H727. All culture media were supplemented by 10% of FBS, 1% of penicillin-streptomycin, and 2 mM glutamine. The human neuroblastoma cell line SH-SY5Y and the Madin-Darby Canine Kidney (MDCK) cells retrovirally transfected with the human MDR1 cDNA (MDCKII-MDR1) were cultured in DMEM supplemented with 100 U/ml penicillin, MDA-MB-231, HCT116, PC3, MCF7 and NCI-H727 cancer cell lines were obtained from the ECACC collection

, Cytotoxicity assay Chemicals were solubilized in DMSO at a concentration of 10 mM (stock solution) and diluted in culture medium to the desired final concentrations. The dose-effect cytotoxic assays (IC 50 determination) were performed by increasing the concentration of each chemical (final well concentrations: 0.1 -0.3 -0.9 -3.0 -9.0 -25 µM). The cells were plated in 96-well plates (4000 cells/well). Twenty-four h after seeding, the cells were exposed to chemicals, All cells were grown at 37 ºC in a humidified atmosphere with 5% CO 2 . All materials for cell culturing were purchased from EuroClone, vol.72

, Vina generated the estimated total Gibbs free energy of binding in kcal/mol, which could be converted to the apparent constant, K i , using the relationship ?G=RT.ln (K i ). Docking poses were visualized using the PyMOL molecular graphics system

, The crystal structure of GSK-3? in complex with PF-04802367 (PBD code 5K5N) was used for molecular docking

. Sussman, Crystals were flash-frozen and stored in liquid nitrogen until used for data collection. Diffraction images were indexed and integrated using XDS,[73] and intensities were further scaled and merged with XSCALE, Purified TcAChE (12 mg mL -1 ) was purified as described by, vol.72

M. Prince, A. Wimo, M. Guerchet, G. Ali, Y. Wu et al., World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends, Alzheimer's Disease International, 2015.

I. W. Hamley, The amyloid beta peptide: a chemist's perspective. Role in Alzheimer's and fibrillization, Chem. Rev, vol.112, pp.5147-5192, 2012.

M. A. Meraz-rios, K. I. Lira-de-leon, V. Campos-pena, M. A. De-anda-hernandez, R. Mena et al.,

. Lopez, Tau oligomers and aggregation in Alzheimer's disease, J. Neurochem, vol.112, pp.1353-1367, 2010.

H. W. Querfurth and F. M. Laferla, Alzheimer's Disease, New Engl, J. Med, vol.362, pp.329-344, 2010.

D. A. Smith, Treatment of Alzheimer's disease in the long-term-care setting, Am. J. Health Syst. Pharm, vol.66, pp.899-907, 2009.

G. T. Grossberg, V. Pejovic, M. L. Miller, and S. M. Graham, Memantine therapy of behavioral symptoms in community-dwelling patients with moderate to severe Alzheimer's disease, Dement. Geriatr. Cogn. Disord, vol.27, pp.164-172, 2009.

D. Wilkinson, Y. Wirth, and C. Goebel, Memantine in patients with moderate to severe

, Alzheimer's disease: meta-analyses using realistic definitions of response, Dement. Geriatr. Cogn. Disord, vol.37, pp.71-85, 2014.

D. J. Findlay and P. J. Connelly, Memantine (Ebixa) in the later stages of dementia, Hosp. Med, vol.64, pp.654-657, 2003.

R. R. Tampi and C. H. Van-dyck, Memantine: efficacy and safety in mild-to-severe Alzheimer's disease, Neuropsychiatr. Dis. Treat, vol.3, pp.245-258, 2007.

J. L. Cummings, T. Morstorf, and K. Zhong, Alzheimer's disease drug-development pipeline: few candidates, frequent failures, Alzheimers Res. Ther, vol.6, p.37, 2014.

S. O. Bachurin, E. V. Bovina, and A. A. Ustyugov, Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends, Med. Res. Rev, vol.37, pp.1186-1225, 2017.

J. Gody?, J. Jo?czyk, D. Panek, and B. Malawska, Therapeutic strategies for Alzheimer's disease in clinical trials, Pharmacol. Rep, vol.68, pp.127-138, 2016.

P. Talwar, J. Sinha, S. Grover, C. Rawat, S. Kushwaha et al., Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective, Mol. Neurobiol, vol.53, pp.4833-4864, 2016.

M. Bajda, N. Guzior, M. Ignasik, and B. Malawska, Multi-target-directed ligands in Alzheimer's disease treatment, Curr. Med. Chem, vol.18, pp.4949-4975, 2011.

A. Cavalli, M. L. Bolognesi, A. Minarini, M. Rosini, V. Tumiatti et al.,

. Melchiorre, Multi-target-directed ligands to combat neurodegenerative diseases, J. Med. Chem, vol.51, pp.347-372, 2008.

N. Guzior, A. Wieckowska, D. Panek, and B. Malawska, Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease, Curr. Med. Chem, vol.22, pp.373-404, 2015.

R. Morphy and Z. Rankovic, Designed multiple ligands. An emerging drug discovery paradigm, J. Med. Chem, vol.48, pp.6523-6543, 2005.

M. Rosini, V. Andrisano, M. Bartolini, M. L. Bolognesi, P. Hrelia et al., Rational approach to discover multipotent anti-Alzheimer drugs, J. Med. Chem, vol.48, pp.360-363, 2005.

S. Das and S. Basu, Multi-targeting Strategies for Alzheimer's Disease Therapeutics: Pros and Cons, Curr. Top. Med. Chem, vol.17, pp.3017-3061, 2017.

M. J. Oset-gasque and J. Marco-contelles, Alzheimer's Disease, the "One-Molecule, OneTarget" Paradigm, and the Multitarget Directed Ligand Approach, ACS Chem. Neurosci, vol.9, pp.401-403, 2018.

M. C. Carreiras, E. Mendes, M. J. Perry, A. P. Francisco, and J. Marco-contelles,

, Multifactorial Nature of Alzheimer Disease for Developing Potential Therapeutics, Curr. Top. Med. Chem, vol.13, pp.1745-1770, 2013.

I. Gulcin, M. Abbasova, P. Taslimi, Z. Huyut, L. Safarova et al.,

S. H. Beydemir, C. T. Alwasel, and . Supuran, Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors, J. Enzyme Inhib. Med. Chem, vol.32, pp.1174-1182, 2017.

A. Talevi, Multi-target pharmacology: possibilities and limitations of the "skeleton key approach" from a medicinal chemist perspective, Front. Pharmacol, vol.6, p.205, 2015.

M. J. Savage and D. E. Gingrich, Advances in the development of kinase inhibitor therapeutics for Alzheimer's disease, Drug Dev. Res, vol.70, pp.125-144, 2009.

L. Martin, X. Latypova, C. M. Wilson, A. Magnaudeix, M. L. Perrin et al., Tau protein kinases: involvement in Alzheimer's disease, Ageing Res Rev, vol.12, pp.289-309, 2013.

D. P. Hanger, B. H. Anderton, and W. Noble, Tau phosphorylation: the therapeutic challenge for neurodegenerative disease, Trends Mol. Med, vol.15, pp.112-119, 2009.

S. L. Liu, C. Wang, T. Jiang, L. Tan, A. Xing et al., The Role of Cdk5 in Alzheimer's Disease, vol.53, pp.4328-4342, 2016.

D. E. Hurtado, L. Molina-porcel, J. C. Carroll, C. Macdonald, A. K. Aboagye et al.,

V. M. Trojanowski and . Lee, Selectively silencing GSK-3 isoforms reduces plaques and tangles in mouse models of Alzheimer's disease, J. Neurosci, vol.32, pp.7392-7402, 2012.

C. J. Phiel, C. A. Wilson, V. M. Lee, and P. S. Klein, GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides, Nature, pp.435-439, 2003.

A. Martinez, D. I. Perez, and C. Gil, Lessons learnt from glycogen synthase kinase 3 inhibitors development for Alzheimer's disease, Curr. Top. Med. Chem, vol.13, pp.1808-1819, 2013.

A. Martinez, C. Gil, and D. I. Perez, Glycogen Synthase Kinase 3 Inhibitors in the Next Horizon for Alzheimer's Disease Treatment, Int. J. Alzheimers Dis, p.280502, 2011.

L. Avrahami, D. Farfara, M. Shaham-kol, R. Vassar, D. Frenkel et al., Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies, J. Biol. Chem, vol.288, pp.1295-1306, 2013.

M. Noh, K. Chun, B. Y. Kang, and H. Kim,

. Kim, Newly developed glycogen synthase kinase-3 (GSK-3) inhibitors protect neuronal cells death in amyloid-beta induced cell model and in a transgenic mouse model of Alzheimer's disease, Biochem. Biophys. Res. Commun, vol.435, pp.274-281, 2013.

J. A. Morales-garcia, R. Luna-medina, S. Alonso-gil, and M. Sanz-sancristobal,

A. Gil, A. Santos, A. Martinez, and . Perez-castillo, Glycogen Synthase Kinase 3 Inhibition Promotes Adult Hippocampal Neurogenesis in Vitro and in Vivo, ACS Chem. Neurosci, vol.3, pp.963-971, 2012.

T. Kramer, B. Schmidt, and F. Lo-monte, Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models, Int. J. Alzheimers Dis, p.381029, 2012.

N. C. Inestrosa, M. C. Dinamarca, and A. Alvarez, Amyloid-cholinesterase interactions. Implications for Alzheimer's disease, FEBS J, vol.275, pp.625-632, 2008.

A. Alvarez, C. Opazo, R. Alarcon, J. Garrido, and N. C. Inestrosa, Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils, J. Mol. Biol, vol.272, pp.348-361, 1997.

F. J. Carvajal and N. C. Inestrosa, Interactions of AChE with A? Aggregates in Alzheimer's Brain: Therapeutic Relevance of IDN 5706, Front. Mol. Neurosci, vol.4, p.19, 2011.

N. C. Inestrosa, A. Alvarez, C. A. Perez, R. D. Moreno, M. Vicente et al.,

C. Casanueva, J. Soto, and . Garrido, Acetylcholinesterase accelerates assembly of amyloid-betapeptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme, Neuron, vol.16, pp.881-891, 1996.

A. Minarini, A. Milelli, E. Simoni, M. Rosini, M. L. Bolognesi et al., Multifunctional Tacrine Derivatives in Alzheimer's Disease, vol.13, pp.1771-1786, 2013.

A. Milelli, A. Simone, N. Ticchi, H. H. Chen, N. Betari et al., Tacrine-based Multifunctional Agents in Alzheimer's Disease: An Old Story in Continuous Development, Curr. Med. Chem, vol.24, pp.3522-3546, 2017.

D. Toiber, A. Berson, D. Greenberg, N. Melamed-book, S. Diamant et al., Nacetylcholinesterase-induced apoptosis in Alzheimer's disease, PLoS One, vol.3, p.3108, 2008.

H. Lin, Q. Li, K. Gu, J. Zhu, X. Jiang et al., Therapeutic Agents in Alzheimer's Disease Through a Multi-targetdirected Ligands Strategy: Recent Progress Based on Tacrine Core, Curr. Top. Med. Chem, vol.17, pp.3000-3016, 2017.

B. Sameem, M. Saeedi, M. Mahdavi, and A. Shafiee, A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer's disease, Eur. J. Med. Chem, vol.128, pp.332-345, 2017.

K. Spilovska, J. Korabecny, E. Nepovimova, R. Dolezal, E. Mezeiova et al., Multitarget Tacrine Hybrids with Neuroprotective Properties to Confront Alzheimer's Disease, vol.17, pp.1006-1026, 2017.

X. Jiang, T. Chen, J. Zhou, S. He, H. Yang et al.,

, Dual GSK-3?/AChE Inhibitors as a New Strategy for Multitargeting Anti-Alzheimer's Disease Drug Discovery, ACS Med. Chem. Lett, vol.9, pp.171-176, 2018.

H. Eldar-finkelman and A. Martinez, GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS, Front. Mol. Neurosci, vol.4, p.32, 2011.

R. Boulahjar, A. Ouach, S. Bourg, P. Bonnet, O. Lozach et al., ) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors, Advances in tetrahydropyrido, vol.101, pp.274-287, 2015.

R. Boulahjar, A. Ouach, C. Matteo, S. Bourg, M. Ravache et al.,

O. Oullier, L. Lozach, C. Meijer, S. Guguen-guillouzo, M. Lazar et al.,

S. Guillaumet and . Routier, Novel tetrahydropyrido[1,2-a]isoindolone derivatives (valmerins): potent cyclin-dependent kinase/glycogen synthase kinase 3 inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts, J. Med. Chem, vol.55, pp.9589-9606, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00785213

Y. Bourne, H. C. Kolb, Z. Radic, K. B. Sharpless, P. Taylor et al., Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation, Proc. Natl. Acad. Sci. U. S. A

A. Krasinski, Z. Radic, R. Manetsch, J. Raushel, P. Taylor et al., In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors, J. Am. Chem. Soc, vol.127, pp.6686-6692, 2005.

W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radic, P. R. Carlier et al.,

. Sharpless, Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks, Angew. Chem. Int. Ed, vol.41, pp.1053-1057, 2002.

Y. Bourne, Z. Radic, H. C. Kolb, K. B. Sharpless, P. Taylor et al., Structural insights into conformational flexibility at the peripheral site and within the active center gorge of AChE, Chem. Biol. Interact, pp.159-165, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00018799

J. P. Colletier, B. Sanson, F. Nachon, E. Gabellieri, C. Fattorusso et al., Conformational flexibility in the peripheral site of Torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor, J. Am. Chem. Soc, vol.128, pp.4526-4527, 2006.

E. H. Rydberg, B. Brumshtein, H. M. Greenblatt, D. M. Wong, D. Shaya et al.,

Y. P. Carlier, I. Pang, J. L. Silman, and . Sussman, Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge, J. Med. Chem, vol.49, pp.5491-5500, 2006.

A. Ouach, R. Boulahjar, C. Vala, S. Bourg, P. Bonnet et al., Novel optimization of valmerins (tetrahydropyrido[1,2-a]isoindolones) as potent dual CDK5/GSK3 inhibitors, Eur. J. Med. Chem, vol.115, pp.311-325, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01295635

O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem, vol.31, pp.455-461, 2010.

S. H. Liang, J. M. Chen, M. D. Normandin, J. S. Chang, G. C. Chang et al.,

C. E. Richter, J. B. Nolan, F. Schachter, Y. Janat, V. Che et al.,

E. Enerson, L. Livni, N. J. Wang, D. Guehl, F. F. Patnaik et al.,

G. E. Haggarty, R. G. Fakhri, N. Kurumbail, and . Vasdev, Discovery of a Highly Selective Glycogen Synthase Kinase-3 Inhibitor (PF-04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging, Angew. Chem. Int. Ed, vol.55, pp.9601-9605, 2016.

R. Boulahjar, A. Ouach, C. Matteo, S. Bourg, M. Ravache et al.,

O. Oullier, L. Lozach, C. Meijer, S. Guguen-guillouzo, M. Lazar et al.,

S. Guillaumet and . Routier,

, Potent Cyclin-Dependent Kinase/Glycogen Synthase Kinase 3 Inhibitors with Antiproliferative Activities and Antitumor Effects in Human Tumor Xenografts, J. Med. Chem, vol.55, pp.9589-9606, 2012.

K. Oukoloff, F. Buron, S. Routier, L. Jean, and P. Y. Renard, Synthetic Route to Rare Isoindolones Derivatives, Eur. J. Org. Chem, pp.2450-2456, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01150276

X. Yang, W. Wedajo, Y. Yamada, S. Dahlroth, J. J. Neo et al., ]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity, Eur. J. Med. Chem, vol.1, pp.262-276, 2018.

A. Nordberg, C. Ballard, R. Bullock, T. Darreh-shori, and M. Somogyi, A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease, Prim. Care Companion CNS Disord, p.15, 2013.

A. Lopalco, H. Ali, N. Denora, and E. Rytting, Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast, International journal of nanomedicine, vol.10, pp.1985-1996, 2015.

T. Cassano, A. Lopalco, M. De-candia, V. Laquintana, A. Lopedota et al.,

R. M. Perrone, G. Iacobazzi, M. Bedse, N. Franco, C. D. Denora et al., OxazepamDopamine Conjugates Increase Dopamine Delivery into Striatum of Intact Rats, Mol. Pharm, vol.14, pp.3178-3187, 2017.

S. Salentin, S. Schreiber, V. J. Haupt, M. F. Adasme, and M. Schroeder, PLIP: fully automated protein-ligand interaction profiler, Nucleic Acids Res, vol.43, pp.443-447, 2015.

G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol, vol.7, pp.88-95, 1961.

L. Pisani, R. Farina, R. Soto-otero, N. Denora, G. F. Mangiatordi et al.,

C. D. Alvarez, M. Altomare, A. Catto, and . Carotti, Searching for Multi-Targeting Neurotherapeutics against Alzheimer's: Discovery of Potent AChE-MAO B Inhibitors through the Decoration of the 2H-Chromen-2-one Structural Motif, Molecules, vol.21, p.362, 2016.

S. Franchini, L. I. Manasieva, C. Sorbi, U. M. Battisti, P. Fossa et al.,

A. Iacobazzi, L. Cilia, S. Pirona, G. Ronsisvalle, L. Aricò et al., Synthesis, biological evaluation and molecular modeling of 1-oxa-4-thiaspiro-and 1,4-dithiaspiro[4.5]decane derivatives as potent and selective 5-HT1A receptor agonists, Eur. J. Med. Chem, vol.125, pp.435-452, 2017.

N. Denora, V. Laquintana, A. Lopedota, M. Serra, L. Dazzi et al., Novel L-Dopa and dopamine prodrugs containing a 2-phenylimidazopyridine moiety, Pharm. Res, vol.24, pp.1309-1324, 2007.

M. F. Sanner, Python: a programming language for software integration and development, J. Mol. Graph. Model, vol.17, pp.57-61, 1999.

W. L. Delano, The PyMOL Molecular Graphics System, 2002.

J. L. Sussman, M. Harel, F. Frolow, L. Varon, L. Toker et al., Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C, J. Mol. Biol, vol.203, pp.821-823, 1988.

W. Kabsch, Integration, scaling, space-group assignment and post-refinement, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.133-144, 2010.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

P. V. Afonine, M. Mustyakimov, R. W. Grosse-kunstleve, N. W. Moriarty, P. Langan et al.,

A. , Joint X-ray and neutron refinement with phenix.refine, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.1153-1163, 2010.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

A. W. Schuttelkopf and D. M. Van-aalten, PRODRG: a tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.1355-1363, 2004.