R. A. Rudel, K. R. Attfield, J. N. Schifano, and J. G. Brody, Chemicals causing mammary gland tumors in animals signal new directions for epidemiology, chemicals testing, and risk assessment for breast cancer prevention, Cancer, vol.109, pp.2635-2666, 2007.

D. A. Crain, S. J. Janssen, T. M. Edwards, J. Heindel, S. Ho et al., Female reproductive disorders: The roles of endocrine-disrupting compounds and developmental timing, Fertil. Steril, vol.90, pp.911-940, 2008.

A. H. Wu, M. C. Yu, C. Tseng, and M. C. Pike, Epidemiology of soy exposures and breast cancer risk, Br. J. Cancer, vol.98, pp.9-14, 2008.

B. J. Caan, L. Natarajan, B. Parker, E. B. Gold, C. Thomson et al., Soy food consumption and breast cancer prognosis, Cancer Epidemiol. Biomark. Prev, vol.20, pp.854-858, 2011.

S. Lecomte, M. Lelong, G. Bourgine, T. Efstathiou, C. Saligaut et al., Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation, Toxicol. Appl. Pharmacol, vol.325, pp.61-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558816

S. Marin, A. J. Ramos, G. Cano-sancho, and V. Sanchis, Mycotoxins: Occurrence, toxicology, and exposure assessment, Food Chem. Toxicol, vol.60, pp.218-237, 2013.

T. Mauro, L. Hao, L. C. Pop, B. Buckley, S. H. Schneider et al., Circulating zearalenone and its metabolites differ in women due to body mass index and food intake, Food Chem. Toxicol, vol.116, p.237, 2018.

J. Maduni?, I. V. Maduni?, G. Gajski, J. Popi?, and V. Garaj-vrhovac, Apigenin: A dietary flavonoid with diverse anticancer properties, Cancer Lett, vol.413, pp.11-22, 2018.

G. L. Hostetler, R. A. Ralston, S. J. Schwartz, and . Flavones, Food Sources, vol.8, pp.423-435, 2017.

M. A. Gates, S. S. Tworoger, J. L. Hecht, I. De-vivo, B. Rosner et al., A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer, Int. J. Cancer, vol.121, pp.2225-2232, 2007.

A. Gradolatto, J. Basly, R. Berges, C. Teyssier, M. Chagnon et al., Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration, Drug Metab. Dispos, vol.33, pp.49-54, 2004.

L. Zhou, J. Li, and C. Yan, Simultaneous determination of three flavonoids and one coumarin by LC-MS/MS: Application to a comparative pharmacokinetic study in normal and arthritic rats after oral administration of Daphne genkwa extract, Biomed. Chromatogr, 2018.

L. Hanske, G. Loh, S. Sczesny, M. Blaut, and A. Braune, The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats, J. Nutr, vol.139, pp.1095-1102, 2009.

A. Ström, J. Hartman, J. S. Foster, S. Kietz, J. Wimalasena et al., Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D, Proc. Natl. Acad. Sci, vol.101, pp.1566-1571, 2004.

J. F. Couse and K. S. Korach, Estrogen receptor null mice: What have we learned and where will they lead us?, Endocr. Rev, vol.20, pp.358-417, 1999.

E. R. Levin and R. J. Pietras, Estrogen receptors outside the nucleus in breast cancer, Breast Cancer Res. Treat, vol.108, pp.351-361, 2008.

K. A. Burns and K. S. Korach, Estrogen receptors and human disease: An update, Arch. Toxicol, vol.86, pp.1491-1504, 2012.

, Breast Cancer Factsheet, Globocan, p.18, 2018.

R. Marcotte, A. Sayad, K. R. Brown, F. Sanchez-garcia, J. Reimand et al., Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance, Cell, vol.164, pp.293-309, 2016.

S. Lecomte, F. Chalmel, F. Ferriere, F. Percevault, N. Plu et al., Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells, Cell Commun. Signal, vol.15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560288

F. Chalmel and M. Primig, The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology, BMC Bioinform, vol.9, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00521445

G. K. Smyth, Linear models and empirical bayes methods for assessing differential expression in microarray experiments, Stat. Appl. Genet. Mol. Biol, vol.3, 2004.

S. Lê, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, J. Stat. Softw, vol.25, pp.1-18, 2008.

D. Yusuf, S. L. Butland, M. I. Swanson, E. Bolotin, A. Ticoll et al., The transcription factor encyclopedia, Genome Biol, vol.13, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00716041

D. Bojcsuk, G. Nagy, and B. L. Balint, Inducible super-enhancers are organized based on canonical signal-specific transcription factor binding elements, Nucleic Acids Res, vol.45, pp.3693-3706, 2017.

T. A. Darde, P. Gaudriault, R. Beranger, C. Lancien, A. Caillarec-joly et al., TOXsIgN: A cross-species repository for toxicogenomic signatures, Bioinformatics, vol.34, pp.2116-2122, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01863047

S. Porter, S. D. Scott, E. M. Sassoon, M. R. Williams, J. L. Jones et al., Dysregulated expression of adamalysin-thrombospondin genes in human breast carcinoma, Clin. Cancer Res, vol.10, pp.2429-24240, 2004.

K. Dahlman-wright, Y. Qiao, P. Jonsson, J. Gustafsson, C. Williams et al., Interplay between AP-1 and estrogen receptor ? in regulating gene expression and proliferation networks in breast cancer cells, Carcinogenesis, vol.33, pp.1684-1691, 2012.

D. Shin, J. Park, J. Lee, H. Won, K. Jang et al., Overexpression of Id1 in transgenic mice promotes mammary basal stem cell activity and breast tumorigenesis, Oncotarget, vol.6, pp.17276-17290, 2015.

D. Tong, G. Heinze, D. Pils, A. Wolf, C. F. Singer et al., Gene expression of PMP22 is an independent prognostic factor for disease-free and overall survival in breast cancer patients, BMC Cancer, vol.10, 2010.

W. Hua, Q. Zhong, T. Xia, Q. Chen, M. Zhang et al., RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma, Cell Death Dis, 2016.

M. Zhang, Y. Zhang, E. Xu, S. Mohibi, D. M. De-anda et al., Rbm24, a target of p53, is necessary for proper expression of p53 and heart development, Cell Death Differ, 2018.

R. Luengo-fernandez, J. Leal, A. Gray, and R. Sullivan, Economic burden of cancer across the European Union: A population-based cost analysis, Lancet Oncol, vol.14, pp.1165-1174, 2013.

J. Baudry, K. E. Assmann, M. Touvier, B. Allès, L. Seconda et al., Association of Frequency of Organic Food Consumption With Cancer Risk, JAMA Intern. Med, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02067480

Y. Li, C. J. Luh, K. A. Burns, Y. Arao, Z. Jiang et al., Endocrine-Disrupting Chemicals (EDCs): In Vitro Mechanism of Estrogenic Activation and Differential Effects on ER Target Genes, Environ. Health Perspect, vol.121, pp.459-466, 2013.

Y. Li, K. A. Burns, Y. Arao, C. J. Luh, and K. S. Korach, Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor ? and ? in vitro, Environ. Health Perspect, vol.120, pp.1029-1035, 2012.

H. Seo, D. G. Denardo, Y. Jacquot, I. Laïos, D. S. Vidal et al., Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha, Breast Cancer Res. Treat, vol.99, pp.121-134, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00116661

P. Cozzini and L. Dellafiora, In silico approach to evaluate molecular interaction between mycotoxins and the estrogen receptors ligand binding domain: A case study on zearalenone and its metabolites, Toxicol. Lett, vol.214, pp.81-85, 2012.

R. Métivier, G. Penot, G. Flouriot, and F. Pakdel, Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: Requirement for the AF-1 alpha-helical core and for a direct interaction between the N-and C-terminal domains, Mol. Endocrinol, vol.15, 1953.

Y. Arao, L. A. Coons, W. J. Zuercher, and K. S. Korach, Transactivation Function-2 of Estrogen Receptor ? Contains Transactivation Function-1-regulating Element, J. Biol. Chem, vol.290, pp.17611-17627, 2015.

A. C. Pike, A. M. Brzozowski, J. Walton, R. E. Hubbard, T. Bonn et al., Structural aspects of agonism and antagonism in the oestrogen receptor, Biochem. Soc. Trans, vol.28, pp.396-400, 2000.

L. Dellafiora, G. Galaverna, C. Dall'asta, and P. Cozzini, Hazard identification of cis/trans -zearalenone through the looking-glass, Food Chem. Toxicol, vol.86, pp.65-71, 2015.

W. Welboren, F. C. Sweep, P. N. Span, and H. G. Stunnenberg, Genomic actions of estrogen receptor alpha: What are the targets and how are they regulated?, Endocr. Relat. Cancer, vol.16, pp.1073-1089, 2009.

I. Wang, Y. Chen, D. Hughes, V. Petrovic, M. L. Major et al., Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase, Mol. Cell. Biol, vol.25, pp.10875-10894, 2005.

J. C. Liu, L. Granieri, M. Shrestha, D. Wang, I. Vorobieva et al., Identification of CDC25 as a Common Therapeutic Target for Triple-Negative Breast Cancer. Cell Rep, vol.23, pp.112-126, 2018.

D. M. Gilkes and G. L. Semenza, Role of hypoxia-inducible factors in breast cancer metastasis, Future Oncol, vol.9, pp.1623-1636, 2013.

J. Yang, A. Altahan, D. T. Jones, F. M. Buffa, E. Bridges et al., Estrogen receptor-? directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer, Proc. Natl. Acad. Sci, vol.112, pp.15172-15177, 2015.

J. H. Fuady, K. Gutsche, S. Santambrogio, Z. Varga, D. Hoogewijs et al., Estrogen-dependent downregulation of hypoxia-inducible factor (HIF)-2? in invasive breast cancer cells, Oncotarget, vol.7, pp.31153-31165, 2016.

M. P. Deyoung, P. Horak, A. Sofer, D. Sgroi, and L. W. Ellisen, Hypoxia regulates TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14 3 3 shuttling, Genes Dev, vol.22, pp.239-251, 2008.

S. Shukla and S. Gupta, Apigenin-induced Cell Cycle Arrest is Mediated by Modulation of MAPK, PI3K-Akt, and Loss of Cyclin D1 Associated Retinoblastoma Dephosphorylation in Human Prostate Cancer Cells, Cell Cycle, vol.6, pp.1102-1114, 2007.

Z. Zhou, M. Tang, Y. Liu, Z. Zhang, R. Lu et al., Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line, Anticancer Drugs, vol.28, pp.446-456, 2017.

J. Yang, C. Pi, and G. Wang, Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells, Biomed. Pharmacother, vol.103, pp.699-707, 2018.

S. Ding, Z. Zhang, J. Song, X. Cheng, J. Jiang et al., Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion, Int. J. Nanomed, vol.9, pp.2327-2333, 2014.

K. Kowalska, D. E. Habrowska-górczy?ska, and A. W. Piastowska-ciesielska, Zearalenone as an endocrine disruptor in humans, Environ. Toxicol. Pharmacol, vol.48, pp.141-149, 2016.