R. Zarate, E. Jaber-vazdekis, N. Tejera, N. Pérez, J. A. Rodriguez et al., Significance of long 467 chain polyunsaturated fatty acids in human health, Clin Trans Med, vol.6, p.25, 2017.

A. Elagizi, C. Lavie, K. Marshall, J. J. Dinicolantonio, J. H. O'heefe et al., Omega-3 469 polyunsaturated fatty acids and cardiovascular health : a comprehensive review, Prog, vol.470

, Cardiovasc Dis, 2018.

J. K. Innes and P. C. Calder, The differential effects of eicosapentaenoic acod and 472 docosahexaenoic acid on cardiometabolic risk factors : a systematic review, Int J Mol Sci, vol.473, p.532, 2018.

H. Yanai, Y. Masui, H. Katsuyama, H. Adachi, A. Kawaguchi et al., An 475 improvement of cardiovascular risk factors by omega-3 polyunsaturated fatty acids, J Clin, p.476

, Med Res, vol.10, pp.281-289, 2018.

J. Delarue, Acides gras polyinsaturés à longue chaîne n-3 et risque cardiovasculaire : un 478 mauvais procès d'inefficacité, Cah Nutr Diet, 2018.

P. C. Calder, Omega-3 fatty acids and inflammatory processes : from molecules to man

, Biochem Soc Trans, vol.45, pp.1105-1115, 2017.

W. Schunck, A. Konkelb, R. Fischerb, and K. Weylandt, Therapeutic potential of omega-3 482 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases, Pharmacol 483 Ther, vol.183, pp.177-204, 2018.

Z. Gu, K. Shan, H. Chen, and Y. Q. Chen, n-3 polyunsaturated fatty acids and their role in cancer 485 chemoprevention, Curr Pharmacol Rep, vol.1, pp.283-294, 2015.

R. A. Siddiqui, K. A. Harvey, Z. Xu, E. M. Bammerlin, C. Walker et al.,

, Docosahexaenoic acid: A natural powerful adjuvant that improves efficacy for anticancer 488 treatment with no adverse effects, Biofactors, vol.37, pp.399-412, 2011.

S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, vol.490, pp.720-731, 1972.

G. L. Nicolson, The fluid-mosaic model of membrane structure : still relevant to 492 understanding the structure, function and dynamics of biological membranes after more than 493 40 years, Biochim Biophys Acta, vol.1838, pp.1451-1466, 2014.

X. Tekpli, J. A. Holme, O. Sergent, and D. Lagadic-gossmann, Importance of plasma membrane 495 dynamics in chemical-induced carcinogenesis, Recent Pat Anticancer Drug Discov, vol.496, pp.347-353, 2011.

X. Tekpli, J. A. Holme, O. Sergent, and D. Lagadic-gossmann, Role for membrane remodeling 498 in cell death: implication for health and disease, Toxicology, vol.304, pp.141-157, 2013.

J. A. Lundbaek, S. A. Collingwood, H. I. Ingolfsson, R. Kapoor, and O. S. Andersen, Lipid bilayer 500 regulation of membrane protein function : gramicidin channels as molecular force probes, JR 501 Soc Interface, vol.7, pp.373-395, 2010.

J. Schumann, It is about fluidity : fatty acids and macrophage phagocytosis, Eur J 503 Pharmacol, vol.785, pp.18-23, 2016.

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, pp.569-572, 1997.

A. Collin, K. Hardonnière, M. Chevanne, J. Vuillemin, N. Podechard et al.,

, Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is 507 responsible for enhanced oxidative stress and cell death in primary rat hepatocytes, p.508

, Radic Biol Med, vol.72, pp.11-22, 2014.

N. Podechard, M. Chevanne, M. Fernier, A. Tête, A. Collin et al., Zebrafish larva 510 as a reliable model for in vivo assessment of membrane remodeling involvement in the 511 hepatotoxicity of chemical agents, J Appl Toxicol, vol.37, pp.732-746, 2017.

X. Yang, W. Sheng, G. Y. Sun, and J. Lee, Effects of fatty acid unsaturation numbers on 535 membrane fluidity and a secretase-dependent amyloid precursor protein processing

, Neurochem Int, vol.58, pp.321-329, 2011.

A. A. Cader, D. A. Butterfield, B. A. Watkins, B. H. Chung, and B. Hennig, Electron spin resonance 538 studies of fatty acid-induced alterations in membrane fluidity in cultured endothelial cells. Int 539, J Biochem Cell Biol, vol.27, pp.665-673, 1995.

M. Hashimoto, S. Hossain, A. A. Mamun, K. Matsuzaki, and H. Arai, Docosahexaenoic acid : 541 one molecule diverse function, Crit Rev Biotechnol, vol.37, pp.579-597, 2017.

M. Hashimoto, S. Hossain, H. Yamasaki, K. Yazawa, and S. Masumura, Effects of 543 eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic 544 endothelial cells, Lipids, vol.34, pp.1297-1304, 1999.

E. R. Brown and P. V. Subbaiah, Differential effects of eicosapentaenoic acid on human skin 546 fibroblasts, Lipids, vol.29, pp.825-829, 1994.

R. P. Mason, R. F. Jacob, S. Shrivastava, S. Sherratt, and A. Chattopadhyay, Eicosapentaenoic 548 acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes 549 bilayer width in atherosclerotic-like model membranes, Biochim Biophys Acta, vol.550, pp.3131-3140, 2016.

F. Aliche-djoudi, N. Podechard, C. A. Chevanne, M. Provost, E. Poul et al., A role 552 for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in 553 primary rat hepatocytes, Food Chem Toxicol, vol.60, pp.286-296, 2013.

T. M. Stulnig, J. Huber, N. Leitinger, E. M. Imre, P. Angelisova et al.,

, Polyunsaturated eicosapentaenoic acid displaces proteins from membrane ratfs by altering raft 556 lipid composition, J Biol Chem, vol.276, pp.37335-37340, 2001.

Q. Li, M. Wang, L. Tan, C. Wang, J. Ma et al., Docosahexaenoic acid changes lipid 558 composition and interleukin-2 receptor signaling in membrane rafts, J Lipid Res, vol.559, pp.1904-1913, 2005.

P. D. Schley, D. N. Brindley, and C. J. Field, n-3) PUFA alter raft lipid composition and decrease 561 epidermal growth factor receptor levels in lipid rafts of human breast cancer cells, J Nutr, vol.562, pp.548-553, 2007.

S. W. Wong, M. J. Kwon, A. M. Choi, H. P. Kim, K. Nakahira et al., , p.564

, Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment 565 into lipid rafts in a reactive oxygen species-dependent manner, J Biol Chem, vol.284, pp.27384-566, 2009.

C. Y. Huang, W. H. Sheu, and A. N. Chiang, Docosahexaenoic acid and eicosapentaenoic acid 568 suppress adhesion molecule expression in human aortic endothelial cells via differential 569 mechanisms, Mol Nutr Food Res, vol.59, pp.751-762, 2015.

A. Takashima, D. Fukuda, K. Tanaka, Y. Higashikuni, Y. Hirata et al.,

, Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-572 deficient mice by inhibiting macrophage activation, Atherosclerosis, vol.254, pp.142-150, 2016.

G. Li, Z. Chen, O. M. Bhat, Q. Z. Zhang, J. M. Abais-battad et al.,

, inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular 575 injury, J Lipid Res, vol.58, pp.1080-1090, 2017.

Y. Y. Fan, L. H. Ly, R. Barhoumi, D. N. Mcmurray, and R. S. Chapkin, Dietary docosahexaenoic 577 acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production, J 578 Immunol, vol.173, pp.6151-6160, 2004.

D. W. Ma, J. Seo, L. A. Davidson, E. S. Callaway, Y. Y. Fan et al., n-3 PUFA alter 580 caveolae lipid composition and resident protein localization in mouse colon, FASEB J, vol.581, pp.1040-1042, 2004.

P. C. Calder, The relationship between the fatty acid composition of immune cells and their 583 function, Prostaglandins, Leukot and Essent Fatty Acids, vol.79, pp.101-108, 2008.

R. A. Siddiqui, K. A. Harvey, G. P. Zaloga, and W. Stillwell, Modulation of lipid rafts by ?-3 fatty 585 acids in inflammation and cancer: implications for use of lipids during nutrition support

, Nutrition Clin Pract, vol.22, pp.74-88, 2007.

N. R. Fuentes, E. Kim, Y. Y. Fan, and R. S. Chapkin, Omega-3 fatty acids, membrane remodeling 588 and cancer prevention, Mol Aspects Med, 2018.

O. Diaz, A. Berquand, M. Dubois, D. Agostino, S. Sette et al., The 590 mechanism of docosahexaenoic acid-induced phospholipase D activation in human 591 lymphocytes involves exclusion of the enzyme from lipid rafts, J Biol Chem, vol.592, issue.18, pp.39368-39378, 2002.

S. R. Shaikh, B. D. Rockett, M. Salameh, and K. Carraway, Docosahexaenoic acid modifies the 594 clustering and size of lipid rafts and the lateral organization and surface expression of MHC 595 class I of EL4 cells, J Nutr, vol.139, pp.1632-1639, 2009.

B. D. Rockett, H. Teague, M. Harris, M. Melton, J. Williams et al., Fish oil 597 increases raft size and membrane order of B cells accompanied by differential effects on 598 function, J Lipid Res, vol.53, pp.674-685, 2012.

S. R. Shaikh and H. Teague, N-3 fatty acids and membrane microdomains: from model 600 membranes to lymphocyte function, Prostaglandins Leukot Essent Fatty Acids, vol.87, p.205, 2012.

S. R. Wassall and W. Stillwell, Polyunsaturated fatty acid-cholesterol interactions: domain 603 formation in membranes, Biochim Biophys Acta, vol.1788, pp.24-32, 2009.

S. Sherrat and R. P. Mason, Eicosapentaenoic acid and docosaheaxaenoic acid have distinct 605 membrane locations and lipid interactions as determined by X-ray diffraction, Chem Phys, vol.606, pp.73-79, 2018.

J. A. Williams, S. E. Batten, M. Harris, B. D. Rockett, S. R. Shaikh et al.,

, Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft 609 domains, Biophys J, vol.103, pp.228-237, 2012.

B. Dendelé, X. Tekpli, K. Hardonnière, J. A. Holme, L. Debure et al., Protective 611 action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane 612 remodeling-dependent NHE1 pathway, Chem Biol Interact, vol.207, pp.41-51, 2014.

C. Bookstein, M. W. Musch, P. K. Dudeja, R. L. Mcswine, Y. Xie et al., Inverse 614 relationship between membrane lipid fluidity and activity of Na + /H + exchangers, NHE-1 and 615 NHE3, in transfected fibroblasts, J Membr Biol, vol.160, pp.183-192, 1997.

M. Arciello, M. Gori, R. Maggio, B. Barbaro, M. Tarocchi et al., Environmental 617 pollution: a tangible risk for NAFLD pathogenesis, Int J Mol Sci, vol.14, pp.22052-22066, 2013.

B. Wahlang, J. I. Beier, H. B. Clair, H. J. Bellis-jones, K. C. Falkner et al., Toxicant-619 associated Steatohepatitis, Toxicol Pathol, vol.41, pp.343-360, 2013.

S. Joshi-barve, I. Kirpich, M. C. Cave, L. S. Marsano, and C. J. Mcclain, Alcoholic, nonalcoholic, 621 and toxicant-associated steatohepatitis: mechanistic similarities and differences, Cell Mol, p.622

, Gastroenterol Hepatol, vol.1, pp.356-367, 2015.

D. Castro, G. S. Calder, and P. C. , Non-alcoholic fatty liver disease and its treatment with n-3 624 polyunsaturated fatty acids, Clin Nutr, pp.37-55, 2018.

D. B. Jump, K. A. Lytle, C. M. Depner, and S. Tripathy, Omega-3 polyunsaturated fatty acids as a 626 treatment strategy for nonalcoholic fatty liver disease, Pharmacol Ther, vol.181, pp.108-125, 2018.

, Scientific opinion on dietary reference values 628 for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty 629 acids, trans fatty acids, and cholesterol, EFSA (European Food Safety Authority), vol.8, 2010.

J. C. Leblanc, J. Volatier, V. Sirot, N. Bemrah-aouachria, and . Calipso, Etude des, p.632
URL : https://hal.archives-ouvertes.fr/hal-00545595

, Consommations ALimentaires de produits de la mer et Imprégnation aux éléments trace, p.633

. Polluants, Rapport d'étude Afssa, Ministère de l'Agriculture et de la Pêche, INRA, vol.634, pp.1-160, 2006.

, Teneurs moyennes en DHA et EPA dans quelques aliments (poissons, fruits 674 de mer et autres). Les valeurs sont exprimées en mg AGPI LC n-3/100 g d'aliments, Tableau, vol.1, p.675