, Ricordel is a recipient of FHU Camin (CHU Rennes) and Nuovo-Soldati Fundation (CHU Genève) fellowships. R.P. is supported by INSERM

R. Médicale, The work was supported by La Ligue Contre le Cancer (Grand Ouest), Association pour la Recherche sur le Cancer (ARC), AIS Rennes Métropole

A. Ciccia and S. J. Elledge, The DNA damage response: making it safe to play with knives, Mol Cell, vol.40, pp.179-204, 2010.

Z. You, C. Chahwan, J. Bailis, T. Hunter, and P. Russell, ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1, Mol Cell Biol, vol.25, pp.5363-79, 2005.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J Biol Chem, vol.273, pp.5858-5868, 1998.

M. F. Lavin, S. Kozlov, M. Gatei, and A. W. Kijas, ATM-dependent phosphorylation of all three members of the MRN complex: From sensor to adaptor, Biomolecules, vol.5, pp.2877-2902, 2015.

S. Nakada, Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice, J Radiat Res, vol.57, pp.33-40, 2016.

C. Doil, N. Mailand, S. Bekker-jensen, P. Menard, D. H. Larsen et al., RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins, Cell, vol.136, pp.435-446, 2009.

N. Mailand, S. Bekker-jensen, H. Faustrup, F. Melander, J. Bartek et al., RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins, Cell, vol.131, pp.887-900, 2007.

C. Guérillon, N. Bigot, and R. Pedeux, The ING tumor suppressor genes: Status in human tumors, Cancer Lett, vol.345, pp.1-16, 2014.

G. He, C. C. Helbing, M. J. Wagner, C. W. Sensen, and K. Riabowol, Phylogenetic analysis of the ING family of PHD finger proteins, Mol Biol Evol, vol.22, pp.104-116, 2005.

D. Ythier, D. Larrieu, C. Brambilla, E. Brambilla, and R. Pedeux, The new tumor suppressor genes ING: genomic structure and status in cancer, Int J Cancer, vol.123, pp.1483-1490, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00326536

C. Guérillon, D. Larrieu, and R. Pedeux, ING1 and ING2: Multifaceted tumor suppressor genes, Cell Mol Life Sci, vol.70, 2013.

D. Larrieu, D. Ythier, R. Binet, C. Brambilla, E. Brambilla et al., ING2 controls the progression of DNA replication forks to maintain genome stability, EMBO Rep, vol.10, pp.1168-1174, 2009.

R. Wong, H. Lin, S. Khosravi, B. Piche, S. M. Jafarnejad et al., Tumour suppressor ING1b maintains genomic stability upon replication stress, Nucleic Acids Res, vol.39, pp.3632-3642, 2011.

R. Loewith, J. S. Smith, M. Meijer, T. J. Williams, N. Bachman et al., Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae, J Biol Chem, vol.276, pp.24068-24074, 2001.

H. Woo, D. Ha, S. Lee, S. B. Buratowski, S. Kim et al., Modulation of gene expression dynamics by co-transcriptional histone methylations, Exp Mol Med, vol.49, p.326, 2017.

Y. Doyon, C. Cayrou, M. Ullah, A. Landry, V. Côté et al., ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation, Mol Cell, vol.21, pp.51-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02154286

N. Avvakumov, M. Lalonde, N. Saksouk, E. Paquet, K. C. Glass et al.,

, Conserved Molecular Interactions within the HBO1 Acetyltransferase Complexes Regulate Cell Proliferation, Mol Cell Biol, vol.32, pp.689-703, 2012.

J. S. Choy and S. J. Kron, NuA4 subunit Yng2 function in intra-S-phase DNA damage response, Mol Cell Biol, vol.22, pp.8215-8225, 2002.

H. Wyatt, S. Sarbajna, J. Matos, and S. C. West, Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells, Mol Cell, vol.52, pp.234-247, 2013.

B. J. Merrill and C. Holm, A requirement for recombinational repair in Saccharomyces cerevisiae is caused by DNA replication defects of mec1 mutants, Genetics, vol.153, pp.595-605, 1999.

R. Loewith, M. Meijer, S. P. Lees-miller, K. Riabowol, and D. Young, Three Yeast Proteins Related to the Human Candidate Tumor Suppressor p33ING1 Are Associated with

, Histone Acetyltransferase Activities. Mol Cell Biol, vol.20, pp.3807-3816, 2000.

Y. Lee, S. Park, S. Ciccone, C. Kim, and S. Lee, An in vivo analysis of MMCinduced DNA damage and its repair, Carcinogenesis, vol.27, pp.446-453, 2006.

S. Panier and D. Durocher, Regulatory ubiquitylation in response to DNA double-strand breaks, DNA Repair (Amst), vol.8, pp.436-443, 2009.

S. P. Jackson and D. Durocher, Regulation of DNA damage responses by ubiquitin and SUMO, Mol Cell, vol.49, pp.795-807, 2013.

S. Zhao, Y. C. Weng, S. S. Yuan, Y. T. Lin, H. C. Hsu et al., Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products, Nature, vol.405, pp.473-477, 2000.

M. F. Lavin, ATM and the Mre11 complex combine to recognize and signal DNA doublestrand breaks, Oncogene, vol.26, pp.7749-7758, 2007.

A. A. Goodarzi, J. C. Jonnalagadda, P. Douglas, D. Young, R. Ye et al., Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A, EMBO J, vol.23, pp.4451-4461, 2004.

S. Shreeram, O. N. Demidov, W. K. Hee, H. Yamaguchi, N. Onishi et al., Wip1 phosphatase modulates ATM-dependent signaling pathways, Mol Cell, vol.23, pp.757-764, 2006.

Y. Sun, Y. Xu, K. Roy, and B. D. Price, DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity, Mol Cell Biol, vol.27, pp.8502-8509, 2007.

Y. Sun, X. Jiang, S. Chen, N. Fernandes, and B. D. Price, A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM, Proc Natl Acad Sci U S A, vol.102, pp.13182-13187, 2005.

A. Bhoumik, N. Singha, M. J. O'connell, and Z. A. Ronai, Regulation of TIP60 by ATF2 modulates ATM activation, J Biol Chem, vol.283, pp.17605-17619, 2008.

Y. Lin, Y. Qi, J. Lu, X. Pan, D. S. Yuan et al., A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation, Genes to cells devoted to Mol {&} Cell Mech, vol.22, pp.789-800, 1998.

S. R. Bhaumik, E. Smith, and A. Shilatifard, Covalent modifications of histones during development and disease pathogenesis, Nat Struct Mol Biol, vol.14, pp.1008-1016, 2007.

R. Murr, J. I. Loizou, Y. Yang, C. Cuenin, H. Li et al., Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks, Nat Cell Biol, vol.8, pp.91-100, 2006.

M. Stucki, J. A. Clapperton, D. Mohammad, M. B. Yaffe, S. J. Smerdon et al., , p.1

, Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks, Cell, vol.123, pp.1213-1226, 2005.

A. A. Sartori, C. Lukas, J. Coates, M. Mistrik, S. Fu et al., Human CtIP promotes DNA end resection, Nature, vol.450, pp.509-514, 2007.

M. Gunduz, L. B. Beder, E. Gunduz, H. Nagatsuka, K. Fukushima et al., Downregulation of ING3 mRNA expression predicts poor prognosis in head and neck cancer, Cancer Sci, vol.99, pp.531-539, 2008.

Y. Wang, D. L. Dai, M. Martinka, and G. Li, Prognostic Significance of Nuclear ING3 Expression in Human Cutaneous Melanoma, Clin Cancer Res, vol.13, pp.4111-4116, 2007.

A. Nabbi, U. L. Mcclurg, S. Thalappilly, A. Almami, M. Mobahat et al., ING3 promotes prostate cancer growth by activating the androgen receptor, BMC Med, vol.15, p.103, 2017.

U. L. Mcclurg, A. Nabbi, C. Ricordel, S. Korolchuk, S. Mccracken et al., Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein, Br J Cancer, vol.118, pp.713-726, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744404

M. Nagashima, M. Shiseki, R. M. Pedeux, S. Okamura, M. Kitahama-shiseki et al.,

, A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis, Oncogene, vol.22, pp.343-350, 2003.

Y. Wang and G. Li, ING3 promotes UV-induced apoptosis via Fas/caspase-8 pathway in melanoma cells, J Biol Chem, vol.281, pp.11887-11893, 2006.

S. Suzuki, Y. Nozawa, S. Tsukamoto, T. Kaneko, H. Imai et al., ING3 Is Essential for Asymmetric Cell Division during Mouse Oocyte Maturation, PLoS One, vol.8, p.74749, 2013.

D. Larrieu and R. Pedeux, SharING out the roles in replicatING DNA, Cell Cycle, vol.8, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00869422

Z. Lou, K. Minter-dykhouse, S. Franco, M. Gostissa, . Rivera-m-a et al., MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals, Mol Cell, vol.21, pp.187-200, 2006.

Y. Sun, X. Jiang, Y. Xu, M. K. Ayrapetov, L. A. Moreau et al., Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60, Nat Cell Biol, vol.11, pp.1376-82, 2009.

Y. Zhou, J. Lee, W. Jiang, J. L. Crowe, S. Zha et al., Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM, Mol Cell, vol.65, pp.91-104, 2017.

G. Velimezi, M. Liontos, K. Vougas, T. Roumeliotis, J. Bartkova et al., Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer, Nat Cell Biol, vol.15, pp.967-977, 2013.

S. Kim, S. Natesan, G. Cornilescu, S. Carlson, M. Tonelli et al., Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3, J Biol Chem, vol.291, pp.18326-18367, 2016.

K. Jacquet, A. Fradet-turcotte, N. Avvakumov, J. Lambert, C. Roques et al.,

, The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation, Mol Cell, vol.62, pp.409-421, 2016.

A. Bothmer, D. F. Robbiani, D. Virgilio, M. Bunting, S. F. Klein-i-a et al., Regulation of DNA End Joining, Resection, and Immunoglobulin Class Switch Recombination by 53BP1, Mol Cell, vol.42, pp.319-329, 2011.

J. M. Lumsden, T. Mccarty, L. K. Petiniot, R. Shen, C. Barlow et al.,

, Immunoglobulin class switch recombination is impaired in Atm-deficient mice, par sumoylation et implication dans la réponse aux dommages à l'ADN, vol.200, pp.1111-1121, 2004.

X. Kong, S. K. Mohanty, J. Stephens, J. T. Heale, V. Gomez-godinez et al., Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells, Nucleic Acids Res, vol.37, p.68, 2009.

R. Pedeux, S. Sengupta, J. C. Shen, O. N. Demidov, S. Saito et al., ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation, Mol Cell Biol, vol.25, pp.6639-6648, 2005.

Y. Galanty, R. Belotserkovskaya, J. Coates, S. Polo, K. M. Miller et al., Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks, Nature, vol.462, pp.935-939, 2009.

A. J. Pierce, R. D. Johnson, L. H. Thompson, and M. Jasin, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes {&} Dev, vol.13, pp.2633-2638, 1999.

A. J. Pierce and M. Jasin, Measuring recombination proficiency in mouse embryonic stem cells, Methods Mol Biol, vol.291, pp.373-384, 2005.