D. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I, 1935.

, Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen Annalen der Physik, vol.416, pp.636-64

D. Meo, S. Espin-lopez, P. Martellosio, A. Pasian, M. Bozzi et al., Experimental Validation of the Dielectric Permittivity of Breast Cancer Tissues, p.50, 2017.

, GHz Proc. IEEE MTT-S Intern. Microw. Workshop Series Advanced Materials and Processes

D. Meo, S. Espin-lopez, P. Martellosio, A. Pasian, M. Matrone et al., On the Feasibility of Breast Cancer Imaging Systems at MillimeterWaves Frequencies IEEE, Trans. Microw. Theory Techn, vol.65, pp.1795-806, 2017.

D. Meo, S. Espin-lopez, P. Martellosio, M. Pasian, M. Bozzi et al., Dielectric properties of breast tissues: experimental results up to 50 GHz Proc, p.12, 2018.

. Eur and . Conf, Antennas Propag, 2018.

D. Meo, S. Pasotti, L. Pasian, M. Matrone, and G. , Realization of breast tissue-mimicking phantom materials: dielectric characterization in the 0.5-50 GHz frequency range Proc, IEEE Intern. Microw. Biomed. Conf. (IMBioC), 2018.

D. Meo, S. Pasotti, L. Pasian, M. Matrone, and G. , On the Conservation of Materials for Breast Phantoms in the Frequency Range 0.5-50 GHz, Proc. 48 th European Microwave Conference, 2018.

N. Duric, P. Littrup, O. Roy, C. Li, S. Schmidt et al., Clinical breast imaging with ultrasound tomography: A description of the SoftVue system, The Journal of the Acoustical Society of America, vol.135, p.2155, 2014.

N. Epstein, A. Golnabi, P. Meaney, and K. Paulsen, Microwave dielectric contrast imaging in a magnetic resonant environment and the effect of using magnetic resonant spatial information in image reconstruction Proc, 2011.

. Conf, IEEE Eng.Med. Biol. Soc, 2011.

E. Fear, J. Bourqui, C. Curtis, D. Mew, B. Docktor et al., Microwave breast imaging with a monostatic radar based system: a study of application to patients, IEEE Trans. Circuits Syst, vol.61, pp.2119-2147, 2013.

T. Grzegorczyk, P. Meaney, P. Kaufman, R. Diflorio-alexander, and K. Paulsen, Fast 3-D tomographic microwave imaging for breast cancer detection, IEEE Trans. Med. Imag, vol.31, pp.1584-92, 2012.

C. Hahn and S. Noghanian, Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models Intern, J. Biomed. Imag, p.803607, 2012.

B. Henin, A. Abbosh, and W. Abdulla, Biomechanical Breast Phantom for Hybrid Breast Imaging Proc. 2015 International Symposium on Antennas and Propagation (ISAP), 2015.

M. Klemm, I. Craddock, and A. Preece, Contrast-enhanced breast cancer detection using dynamic microwave imaging Proc, IEEE Antennas Propagation Soc. Intern. Symp, 2012.

M. Lazebnik, E. Madsen, G. Frank, and S. Hagness, Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications, Phys. Med. Biol, vol.50, pp.4245-58, 2005.

M. Lazebnik, L. Mccartney, D. Popovic, C. Watkins, M. Lindstrom et al., A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries, Phys. Med. Biol, vol.52, pp.2637-56, 2007.

M. Lazebnik, D. Popovic, L. Mccartney, C. Watkins, M. Lindstrom et al., A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries, Phys. Med. Biol, vol.52, pp.6093-115, 2007.

E. Madsen, J. Zagzebski, and G. Frank, Oil-in-Gelatine Dispersions for Use ad Ultrasonically Tissue-Mimicking, Materials Ultrasound in Med. & Biol, vol.8, pp.277-87, 1982.

E. Madsen, M. Hobson, H. Shi, T. Varghese, and G. Frank, Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms, Phys. Med. Biol, vol.50, pp.5597-618, 2005.

E. Madsen, M. Hobson, H. Shi, T. Varghese, and G. Frank, Stability of Heterogeneous Elastography Phantoms Made From Oil Dispersions in Aqueous, Gels Ultrasound in Med. & Biol, vol.32, pp.261-70, 2006.

A. Martellosio, M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti et al., , pp.0-5, 2015.

, GHz Dielectric Characterization of Breast Cancer Tissues IET Electron. Lett, vol.51, pp.974-979

A. Martellosio, M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti et al., , 2017.

, Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues, IEEE Trans. Microw. Theory Techn, vol.65, pp.998-1011

G. Matrone, A. Ramalli, A. Savoia, F. Quaglia, G. Castellazzi et al., An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to, Brain Imaging J. Vis. Exp, p.127, 2017.

N. Nikolova, Microwave imaging for breast cancer IEEE Microwave Magazine, vol.12, pp.78-94, 2011.

D. Piras, W. Xia, W. Steenbergen, T. Van-leeuwen, and S. Manohar, Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives IEEE, J. Sel. Topics Quantum Electron, vol.16, pp.730-739, 2010.

A. Preece, I. Craddock, M. Shere, L. Jones, and H. Winton, MARIA M4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection, J. Med. Imag, p.3, 2016.

E. Porter, J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, Improved tissue phantoms for experimental validation of microwave breast cancer detection, Proc. 2010 4th Eur. Conf. Antennas Propag, 2010.