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Autonomous implantable bioelectronics requires efficient radiating structures for data transfer and
wireless powering. The radiation of body-implanted capsules is investigated to obtain the explicit
radiation optima for E- and B-coupled sources of arbitrary dimensions and properties. The analysis
uses the conservation-of-energy formulation within dispersive homogeneous and stratified canonical
body models. The results reveal that the fundamental bounds exceed by far the efficiencies currently
obtained by conventional designs. Finally, a practical realization of the optimal source based on a
dielectric-loaded cylindrical-patch structure is presented. The radiation efficiency of the structure
closely approaches the theoretical bounds and shows a fivefold improvement over existing systems.

Miniature body-implanted devices offer powerful capa-
bilities for medicine and clinical research enabling more
precise diagnostics and treatment than ever before [1].
For instance, the emerging electroceuticals aim individual
neural circuits that regulate the physiological processes
to treat a wide range of illnesses [2]. Likewise, wireless
powering makes the lifespan of implants practically un-
limited; efficient theoretical approaches have been pro-
posed recently [3–5]. Body-conformal surfaces can focus
energy into tissues [6]. However, efficient radiating struc-
tures are required for body-implanted capsules to over-
come existing limitations on powering, safety, and data
transfer. These constraints prohibit us, for instance, to
realize wireless neural interfaces [7, 8], implantable lab-
on-a-chips [9], and surgical microbots [10].

Physical bounds on radiation efficiency η of arbitrary
sources in free space have been extensively studied [11–
15]. Effects of tissues on η and optimal frequency fopt
have been considered in [16] for body-implanted induc-
tor sources and in [17] for infinitesimal magnetic dipole
and current sources. It is still unclear whether magnetic
B-coupled (TE10) or electric E-coupled (TM10) sources
maximize η in tissues. On the one hand, nearly all tis-
sues are weakly diamagnetic. Therefore, negligible losses
occur within the evanescent B-field of TE10 (contrast
this with TM10 where near-field energy is dissipated via
dielectric relaxation [18]). On the other hand, high per-
mittivity values of tissues act on E-coupled sources, and
higher η can be achieved using dielectric loading [14].

In this Letter we obtain explicit radiation optima of
body-implanted capsules equipped with arbitrary finite-
sized TM10 and TE10 sources. Optimal (in terms of
η [12]) surface current density distributions on ΣC re-
present the sources (Fig. 1). Physical bounds on η (f)
strongly depend on the configuration and dielectric pro-
perties of the source region; this letter quantifies their
effects for the first time. The results reveal that it is pos-
sible to outperform state-of-the-art designs by a factor of
five in terms of radiation efficiency. Based on the results,
we show that a dielectric-loaded cylindrical-patch source
closely approaches this optimal efficiency.

Problem Formulation—A stratified sphere ΩP of va-
riable radius RP and of complex permittivity ε̂ (r, ω) =
ε′− iε′′ = ε0εr(r, ω)− iσ(r, ω)/ω (where εr is the relative
permittivity, σ is the electrical conductivity, ω = 2πf
is the angular frequency, and f is the frequency) repre-
sents the tissues [Fig. 1(a)]. The thicknesses of 5-mm
fat and 2-mm skin layers are kept constant throughout
the study. The validity and limitations of this model are
discussed in [19]. The EM field radiated from an arbi-
trary source inside ΩP satisfies the inhomogeneous wave
equation. In terms of the time-harmonic electric field
E (time variations of the form eiωt), it is expressed as
∇2E = iωµ0Js + iωµ0σE − ω2µ0ε0εrE, where Js is the
source electric current density [20]. Taking into account
the z-axial symmetry of the problem on Fig. 1, we reduce
it to R2 assuming E (r, ϕ, z) = Ē (r, z) e−imϕ, where m
is the azimuthal mode number.

An arbitrary current density J (satisfying Maxwell’s
equations) flows through ΩP and has values Js on the
cylindrical surface ΣC depicted on Fig. 1(b). The surface
is defined by the variable length L and radius RC ; the
circumradius a ≡

√
L2/4 +R2

C . To represent a generic
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FIG. 1. Problem formulation (not to scale). (a) Stratified
spherical model of body tissues (phantom) ΩP around the
source ΩS : “1” is the muscle {εr,1 (ω) , σ1 (ω)}, “2” is the 5-
mm layer of fat {εr,2 (ω) , σ2 (ω)}, and “3” is the 2-mm layer
of skin {εr,3 (ω) , σ3 (ω)}. (b) Source region ΩS defined as a
current density distribution on the cylindrical surface ΣC .
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FIG. 2. (a) TM10 and (b) TE10 sources are defined as current density Js distributions on the surface ΣC ; the contour lines
depict the distribution of electric E and magnetic B fields, respectively (arb. units). (c)–(e) Implantation depth (d ≈ RP − a)
significantly affects the optimal frequency fopt and radiation efficiency η. (c) max (η) exponentially decays with implantation
depth. (d)–(e) η spectrum of (d) TM10 and (e) TE10. (f) Skin and fat layers [Fig. 1(a)] increase η (compared to a homogeneous
RP = 50 mm phantom) for both sources by improving wave-impedance matching with free space. The effect is observed for
both the layers placed inside (inr, RP = 50 mm) and outside (otr, RP = 57 mm) of the homogeneous (hg) phantom.

pill-shaped in-body device, a lossless (i.e. σ = 0) region
ΩS ∈ ΩP encloses the surface ΣC . The region consists
of a cylinder of length L and radius RC + T and two
hemispheres of the same radius. Like so, the variable T
allows for evaluating the impact of shell (or superstrate)
thickness on η. The permittivity εr,S of ΩS accounts
for the effect of dielectric loading (εr,S ∝ η [19]). It is
assumed that ΩS is composed of non-magnetic materials.

The surface current density Js (r, ϕ, z) is defined on
ΣC for TM10 [Fig. 2(a)] and TE10 [Fig. 2(b)] modes as

Js,TM10
= [0, 0, cos (πz/L)] , (1a)

Js,TE10
= (0, 1, 0) . (1b)

The radiation efficiency η is derived from the con-
servation of energy [20]. Poynting’s theorem states
that Ps = Pe + Pd + i2ω

(
W̄m − W̄e

)
, where Ps =

−0.5
t

ΩS
(H∗ ·Mi + E · J∗i ) dv is the supplied power,

Pe =
v

ΣR
(0.5E×H∗) · ds is the exiting power, and

Pd = 0.5
t

ΩP
σ|E|2dv is the dissipated power. In this

way, we calculate the radiation efficiency as

η ≡ <(Pe)/<(Ps). (2)

The peak of η (f) defines the optimal frequency fopt as
η (fopt) ≡ max (η).

Note that for a real-life antenna, the total radia-
tion efficiency also includes a mismatch loss as ηtot =
η
(
1− |ΓA|2

)
, where ΓA is the reflection coefficient at the

antenna feed. In this letter, we consider ΓA = 0.

Numerical Results—Studying η (f) of the formulated
problem requires solving the second-order linear partial
differential equation. We use the fully-adaptive hp-finite
element method implemented with the in-house code
Agros2D [21]. The hp-adaptivity algorithm is set to
maintain the total-energy relative error below 10−4. Ad-
ditional verification ensures the power-balance residual
max (δP ) ≡ max [(Ps − Pe − Pd) /Ps] ≤ 10−3 ∀ f .

To represent the tissue dispersion, we use the four-
region Cole–Cole model ε̂ (ω) = ε′ − iε′′ = ε∞ +∑4
n=1 (εs − ε∞)n /

[
1 + (iωτn)

(1−αn)
]

+ σi/ (iωε0). The

parameters of the model for different tissues have been
defined in [22] based on experimental data [23].

We start by calculating the effect on fopt and max (η)
of the phantom radius RP ∈ [10, 100] mm that is asymp-
totic to the source implantation depth d ≈ RP − a.
The source geometry is L = 10 mm, RC = 4 mm, and
T = 0.5 mm (average properties of existing capsules [1]),
and εr,S = εr,1 (Fig. 1). If not indicated otherwise, these
source properties are used hereafter. Fig. 2(c) shows the
maximum achievable efficiency as a function of RP .

As can be seen in Figs. 2(d)–(e), the optimal frequency
range follows a skew normal distribution within conside-
red f ∈ [0.1, 4] GHz. For a given depth, fopt is the best
compromise between the attenuation losses α ∝ f on
the one hand, and the wave-impedance mismatch at the
tissue–air interface |Γ| ∝ f−1 as well as the source elec-
trical size ka (where k is the wavenumber) on the other
[17]. For TM10, the optimal frequency can be approxi-
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FIG. 3. (a), (b) Theoretical bounds
on the radiation efficiency η depend on
the frequency and the source geometry:
(a) TM10 mode and (b) TE10 mode sour-
ces centered inside of a spherical RP =
50 mm phantom ΩP (dispersive muscle-
equivalent EM properties, no stratifica-
tion). (c)–(e) Normalized E-field distri-
butions of the TM10 mode source (L =
10 mm, RC = 4 mm, and T = 0.5 mm)
in a RP = 50 mm stratified ΩP at
(c) 100 MHz (low η due to an inefficient
source), (d) 1.2 GHz (maximum η), and
(e) 3.5 GHz (low η due to attenuation).

TABLE I. Mode-dependent coefficients ci of (3) and adjusted
coefficient of determination R̄2.

c1 c2 c3 c4 R̄2

TM10: 0.003 18 59.82 0.3322 0.5318 0.9725

TE10: 0.006 75 1.252 0.3321 0.4006 0.9769

mated as fopt = 16.63R−0.659
P (GHz) (adjusted coefficient

of determination R̄2 = 0.988), and the peak efficiency
as max (η) = 0.223 exp (−0.037RP ) , R̄2 = 0.984. For
TE10, fopt = 17.21R−0.695

P , R̄2 = 0.979, and max (η) =
0.191 exp (−0.047RP ) , R̄2 = 0.991.

For a given implantation depth, the TM10 mode allows
for higher max (η) compared to TE10. The magnitude of
this effect is inversely proportional to RP : max (ηTM ) is
78% higher than max (ηTE) at RP = 20 mm but appro-
aches the same level at RP = 100 mm [Fig. 2(c)]. Ho-
wever, TE10 provides substantially better efficiency for
f . 0.7 GHz (this is consistent with findings of Kim et al.
[16]). In addition, there is no substantial effect of RP on
ηTE for f . 0.2 GHz [Fig. 2(e)]. Clearly, at such fre-
quencies both sources operate in near field within ΩP .
The near field of the TE10 source is essentially magne-
tic [Fig. 2(b)]; as nearly all biological tissues are weakly
diamagnetic, the losses in ΩP are negligible for this case.

We use RP = 50 mm as the reference value. In addi-
tion to the phantom size, the layers of fat (εr,2, σ2) and
skin (εr,3, σ3) [Fig. 1(a), “2” and “3,” respectively] af-
fect η compared to the homogeneous muscle (εr,1, σ1)
phantom of the same RP . As εr,1 > εr,2 ∀ f ∈[
107, 1010

]
Hz [23], this effect is in part due to mitiga-

tion of the wave-impedance contrast with surrounding
free space. Obviously, if we add the skin and fat layers in-
side of RP = 50 mm sphere, the effect is stronger because
of reduced energy dissipation in ΩP as σ1 > σ2 ∀ f . This
case results in the highest η for both sources [Fig. 2(f),
“inr”]. However, adding the layers outisde of the sp-

here [i.e. total RP = 57 mm, Fig. 2(f), “otr”] improves
η as well compared to the homogeneous case [Fig. 2(f),
“hg”]. This happens despite the added attenuation due
to σ2 and σ3. Since the homogeneous muscle-equivalent
phantom gives the most conservative value of max (η), we
proceed with the homogeneous RP = 50 mm case for the
subsequent study of different ΩS configurations. In addi-
tion, this setup can be easily replicated for experiments
[24].

In terms of η, spherical sources are optimal for a given
ka [14] but impractical for application in bioelectronics.
We start by comparing η of the cylindrical ΣC with the
equivalent spherical source: i.e. radius= a, same εr,S
and T [Fig. 1(b)]. JS is defined according to (1), where
L = πa for the spherical TM10 source. For spherical
sources, max (η) increases 16.9% for TM10 and 11.0% for
TE10; fopt range remains invariant.

Peak radiation efficiency strongly depends on the di-
mensions of ΣC . We compute the effect of both length
L and radius RC on fopt and max (η). Among the para-
meters of ΣC , L ∈ [1, 31] mm has the strongest effect on
max (η). Figs. 3(a) and 3(b) demonstrate this for TM10

and TE10 modes, respectively. Eq. (3) summarizes the
observed radiation efficiency η results for both modes:

max [η (f, L)] =
c1 ln (f + c2)

c3L
exp

(
− lnL− c3

2c24

)
, (3)

where ci are the mode-dependent coefficients (Table I),
L is the length (mm), and f is the frequency (GHz).

For TM10, the results are straightforward: the longer
the source is, the higher the max (η). For the longest
considered one (L ≈ 3 cm, typical size of a pacema-
ker or a neural stimulator), max (η) approaches 5% at
fopt ≈ 1.1 GHz [Fig. 3(a)]. This is about an order of
magnitude improvement of η compared to existing devi-
ces with maximum efficiencies of about 0.5% [25].

Contrast this with TE10 [Fig. 3(b)]. Here, the effi-
ciency peaks around 1.5RC < L < 3RC that is the opti-
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due to the feed. (b) The dielectric-loaded cylindrical patch
efficiency (×) exceeds the theoretical bounds of TE10 and
closely approaches η of TM10. (c) Synthesized cylindrical
patch design (mm) and time snapshot of E-field distribution.

mal dimension range for inductor sources. We shall also
see that for L . 5 mm the TE10 mode not only gives
better max (η) but also improved η for f < fopt. At
these frequencies, an electrically-small TM10 source (e.g.
L = 10 mm ≈ λ/37 at 100 MHz in muscle) produces
a weak E-field [Fig. 3(c)]. Consequently, TM10 is in-
efficient under these conditions. On the other hand, the
same TM10 source operating at fopt ≈ 1.2 GHz [Fig. 3(d)]
results in 55% increase in max (η) compared to the TE10

one. In this case, L ≈ λ/3.4. For f > fopt, the decline of
η is nearly identical for both modes as it is driven by the
attenuation of the wave propagating inside ΩP [Fig. 3(e)].

The radius of ΣC [Fig. 1(b)] has a moderate effect
on radiation. For RC ∈ [1, 5] mm, the optimal fre-
quency remains invariant for both modes: fopt = 1.3 GHz
±50 MHz. However, max (η) is linearly proportional to
RC (mm). Given L = 10 mm, TM10 yields max (η) =
3.7 × 10−3RC + 0.017

(
R̄2 = 0.9902

)
, and TE10 gives

max (η) = 1.9× 10−3RC + 0.013
(
R̄2 = 0.9956

)
. For the

studied radii, max (η) is roughly twice for TM10. But,
again, TE10 results in better η in the sub-GHz range.

Next, we characterize the effect of ΩS dielectric loa-
ding on η using εr,S(ω) = cdlεr,1(ω) [Fig. 1(b)], where
εr,1 is the dispersive permittivity of muscle and cdl ∈
[1/εr,1, 2] is the coefficient. cdl = 1/εr,1 ⇒ ΩS{ε0, 0}
that represents the source without any artificial die-
lectric loading (i.e. only surrounding tissues load the
source; the dependence of tissue EM properties on η
was studied in [19]). Given the definition of sources
through Js [see Eq. (1)], the dielectric loading impacts

only the efficiency of the TM10 source and has no ef-
fect on the TE10 one. For TM10, εr,S is inversely pro-
portional to the optimal frequency (GHz) as fopt =
−5.63 × 10−2cdl + 1.34

(
R̄2 = 0.884

)
. Dielectric loading

of TM10 source significantly improves radiation perfor-
mance: max (η) = 4.3 × 10−3cdl + 0.027

(
R̄2 = 0.943

)
.

Note that the latter term is max (η) of an unloaded TM10

source. These effects are in part due to the scaling of the
source electrical size ka ∝

√
εeff, where εeff is the effective

permittivity around the source, which is function of εr,S .
A high-permittivity shell of thickness T ∈ [0.1, 3] mm

can be used to artificially load the source (i.e. via εr, S)
to increase η (biocompatibility of the shell must be ensu-
red through in vitro and in vivo tests in accordance with
current regulations). In addition, the low-loss shell redu-
ces dissipation in the near-field of the TM10 source. Gi-
ven εr,S ≈ εr,1 (wave impedance is closely matched with
a surrounding tissue), T affects the optimal frequency
insignificantly (fopt ≈ 1.2 ± 0.1 GHz for both sources).
However, η ∝ T , and the effect on TM10 mode is stron-
ger: max (η) = 6.1× 10−3T + 0.029

(
R̄2 = 1

)
. For TE10,

max (η) = 1.8 × 10−3T + 0.02
(
R̄2 = 1

)
. These results

are consistent with the findings of Merli et al. [26]. Note
that if εr,S 6= εr,1, thicker shell would also affect the op-
timal frequency by increasing the effect of εr,S described
above. So, fopt ∝ 1/(εr,S · T ).
Optimal Source Realization—Taking into account on

the identified features, we design a proof-of-concept
body-implanted capsule (Fig. 4) that shows about fi-
vefold improvement of radiation efficiency compared to
existing devices [25]. Having η ≈ 2.5%, it exceeds the
theoretical bounds of TE10 and closely approaches η of
the TM10 source [Fig. 4(b)]. The capsule operates at Wi-
reless Medical Telemetry Service (WMTS) band centered
around f0 = 1.4 GHz that is close to fopt [Fig. 4(b)].

Fig. 4(c) shows the synthesized cylindrical-patch struc-
ture that is the most suitable to closely replicate the theo-
retical TM10 mode source [Fig. 2(a)] in terms of E and Js
distributions [Fig. 4(a)]. The capsule shell (T = 1 mm)
and 76.2-µm-thick (3 mil) substrate load the antenna
with εr,S = 80 that is close to maximum permittivity
of human tissues as well as water at 1.4 GHz [23]. The
source radius is RC = 4 mm. Within this environment
and considering ΩP , the λ/2 resonant length (i.e. when
= [ZA (f0)] = 0) of the patch is 11.7 mm. The ground
plane extends 0.5 mm further to mitigate E-field frin-
ging to the inside of the capsule. Therefore, the total
ΣC-equivalent length is L = 12.7 mm, which was used to
calculate the theoretical bounds in Fig. 2(a).

The cylindrical patch spans ΣC over a sector angle ϕC
in the azimuth plane x–y. As the physical size increases
with the angle, η ∝ ϕC ∈ (0, π]. However, an array of
narrow sources (i.e. ϕC � π) makes it possible to realize
superdirective beamforming [27]. Along with the adap-
tive frequency hopping to adjust for varying implantation
depth [17], such source minimizes the energy dissipation
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in tissues therefore maximizing η.
Conclusion—Optimal radiation performance requires

minimizing the dissipated energy for a given power flow
in the far field. For a given radiation pattern, the maxi-
mum operating range and data rates of body-implanted
capsules can only be improved by increasing the radia-
tion efficiency. In this Letter, we quantified the tradeoffs
between the parameters of TM10 and TE10 sources and
their achievable efficiencies so that optimal radiation can
be achieved. The established physical bounds on η serve
as the design quality gauge, facilitate the choice of the
source type and dimensions, and provide simple rules to
check the feasibility of a given design. While the study
uses simple tissue structures, Ref. [17] suggests that the
findings remain valid in realistic tissue geometries.

Based on the established features, we showed that
the fundamental bounds exceed by far the efficiencies
obtained by conventional designs. We closely approach
these bounds in practice by using a dielectric-loaded
radiating structure that closely replicates Js distribution
of the TM10 source. The optimized source outperforms
the existing systems by a factor of five, which represents
a fundamentally new capability enabling safe, power-
efficient, and high throughput devices.
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gion of Brittany, Ministry of Higher Education and Rese-
arch, Rennes Métropole and Conseil Départemental 35,
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