S. U. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, pp.99-105, 1995.

O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi et al.,

M. Marshall, R. A. Siavashi, H. Taylor, S. Niazmand, T. Wongwises et al., Recent Advances in Modeling and Simulation of Nanofluid FlowsPart I: Fundamental and Theory, 2018.

O. Mahian, L. Kolsi, M. Amani, P. Estellé, P. Ahmad et al.,

R. A. Marshall, E. Taylor, S. Abu-nada, H. Rashidi, S. Niazmand et al., Recent Advances in Modeling and Simulation of Nanofluid Flows-Part II: Applications, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02051317

N. A. Sidik, M. N. Yazid, and R. Mamat, A review on the application of nanofluids in vehicle engine cooling system, Int Commun Heat Mass, vol.68, pp.85-90, 2015.

S. Kadri, R. Mehdaoui, and M. Elmir, A vertical magneto-convection in square cavity containing a al2o3+water nanofluid: cooling of electronic compounds, Enrgy Proced, vol.18, pp.724-732, 2012.

A. Yasinskiy, J. Navas, T. Aguilar, R. Alcantara, J. J. Gallardo et al., Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants, Renew Energ, vol.119, pp.809-819, 2018.

J. M. Wu and J. Y. Zhao, A review of nanofluid heat transfer and critical heat flux enhancement-Research gap to engineering application, Prog Nucl Energ, vol.66, pp.13-24, 2013.

J. Fal, O. Mahian, and G. Zyla, Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, Review, Energies, vol.11, p.2942, 2018.

D. Shin and D. Banerjee, Enhanced Specific Heat Capacity of Nanomaterials Synthesized by Dispersing Silica Nanoparticles in Eutectic Mixtures, J Heat Trans-T Asme, vol.135, issue.3, p.32801, 2013.

S. Z. Heris, M. A. Razbani, P. Estelle, and O. Mahian, Rheological Behavior of ZincOxide Nanolubricants, J Disper Sci Technol, vol.36, issue.8, pp.1073-1079, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01076551

T. Yiamsawas, A. S. Dalkilic, O. Mahian, and S. Wongwises, Measurement and Correlation of the Viscosity of Water-Based Al2O3 and TiO2 Nanofluids in High Temperatures and Comparisons with Literature Reports, J Disper Sci Technol, vol.34, issue.12, pp.1697-1703, 2013.

Y. Gao, H. Wang, A. P. Sasmito, and A. S. Mujumdar, Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids, Int J Heat Mass Tran, vol.123, pp.97-109, 2018.

B. Ilhan and H. Erturk, Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe, Int J Heat Mass Tran, vol.111, pp.500-507, 2017.

G. Zyla, J. Fal, J. Traciak, M. Gizowska, and K. Perkowski, Huge thermal conductivity enhancement in boron nitride -ethylene glycol nanofluids, Mater Chem Phys, vol.180, pp.250-255, 2016.

O. Mahian, A. Kianifar, and S. Wongwises, Dispersion of ZnO Nanoparticles in a Mixture of Ethylene Glycol-Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis, J Clust Sci, vol.24, issue.4, pp.1103-1114, 2013.

S. A. Angayarkanni and J. Philip, Review on thermal properties of nanofluids: Recent developments, Adv Colloid Interfac, vol.225, pp.146-176, 2015.

S. Lee, S. U. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J Heat Trans-T Asme, vol.121, issue.2, pp.280-289, 1999.

O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study, Int J Heat Mass Tran, vol.99, pp.792-804, 2016.

R. Gomez-villarejo, E. I. Martín, J. Navas, A. Sánchez-coronilla, T. Aguilar et al., Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights, Applied Energy, vol.194, pp.19-29, 2017.

J. Navas, A. Sánchez-coronilla, E. I. Martín, M. Teruel, J. J. Gallardo et al., On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: An experimental and molecular dynamics study, Nano Energy, vol.27, pp.213-224, 2016.

T. Ishii, T. Sato, Y. Sekikawa, and M. Iwata, Growth of Whiskers of Hexagonal BoronNitride, J Cryst Growth, vol.52, pp.285-289, 1981.

N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen et al., Boron-Nitride Nanotubes, vol.269, pp.966-967, 1995.

D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima et al., Nanotubes in boron nitride laser heated at high pressure, Appl Phys Lett, vol.69, issue.14, pp.2045-2047, 1996.

O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff et al., CVD growth of boron nitride nanotubes, vol.12, p.1808, 2000.

W. Q. Han, Y. Bando, K. Kurashima, and T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Appl Phys Lett, vol.73, issue.21, pp.3085-3087, 1998.

Q. Huang, Y. S. Bando, X. Xu, T. Nishimura, C. Y. Zhi et al., Enhancing superplasticity of engineering ceramics by introducing BN nanotubes, Nanotechnology, vol.18, issue.48, 2007.

G. Mpourmpakis and G. E. Froudakis, Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage? An ab initio theoretical study, Catal Today, vol.120, issue.3-4, pp.341-345, 2007.

A. Nag, K. Raidongia, K. P. Hembram, R. Datta, U. V. Waghmare et al., Graphene Analogues of BN: Novel Synthesis and Properties, vol.4, pp.1539-1544, 2010.

H. B. Zeng, C. Y. Zhi, Z. H. Zhang, X. L. Wei, X. B. Wang et al., White Graphenes": Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, Nano Lett, vol.10, issue.12, pp.5049-5055, 2010.

C. C. Tang, Y. Bando, Y. Huang, C. Y. Zhi, and D. Golberg, Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles, Adv Funct Mater, vol.18, issue.22, pp.3653-3661, 2008.

C. H. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Y. Zhang et al., Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications, vol.21, 2016.

Z. G. Chen, J. Zou, G. Liu, F. Li, Y. Wang et al., Novel Boron Nitride Hollow Nanoribbons, vol.2, pp.2183-2191, 2008.

W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos Sci Technol, vol.69, issue.10, pp.1486-1498, 2009.

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

R. Zhang, A. Dowden, H. Deng, M. Baxendale, and T. Peijs, Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite, Compos Sci Technol, vol.69, issue.10, pp.1499-1504, 2009.

J. Yu, L. Qin, Y. F. Hao, S. Kuang, X. D. Bai et al., Vertically Aligned Boron Nitride Nanosheets: Chemical Vapor Synthesis, Ultraviolet Light Emission, and Superhydrophobicity, Acs Nano, vol.4, issue.1, pp.414-422, 2010.

F. M. Abbasi, M. Gul, and S. A. Shehzad, Hall effects on peristalsis of boron nitrideethylene glycol nanofluid with temperature dependent thermal conductivity, Physica E, vol.99, pp.275-284, 2018.

J. Fal, M. Cholewa, M. Gizowska, A. Witek, and G. Zyla, Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids, J Electron Mater, vol.46, issue.2, pp.856-865, 2017.

B. Ilhan, M. Kurt, and H. Erturk, Experimental investigation of heat transfer enhancement and viscosity change of hBN nanofluids, Exp Therm Fluid Sci, vol.77, pp.272-283, 2016.

Y. J. Li, J. E. Zhou, S. Tung, E. Schneider, and S. Q. Xi, A review on development of nanofluid preparation and characterization, Powder Technol, vol.196, issue.2, pp.89-101, 2009.

W. S. Sarsam, A. Amiri, M. N. Zubir, H. Yarmand, S. N. Kazi et al., Stability and thermophysical properties of water-based nanofluids containing triethanolamine-treated graphene nanoplatelets with different specific surface areas, Colloid Surface A, vol.500, pp.17-31, 2016.

R. C. Murdock, L. Braydich-stolle, A. M. Schrand, J. J. Schlager, and S. M. Hussain, Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique, Toxicol Sci, vol.101, issue.2, pp.239-253, 2008.

M. Chandrasekar, S. Suresh, and T. Senthilkumar, Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids -A review, Renew Sust Energ Rev, vol.16, issue.6, pp.3917-3938, 2012.

P. Estelle, D. Cabaleiro, G. Zyla, L. Lugo, and S. M. Murshed, Current trends in surface tension and wetting behavior of nanofluids, Renew Sust Energ Rev, vol.94, pp.931-944, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875315

D. Cabaleiro, P. Estellé, H. Navas, A. Desforges, and B. Vigolo, Dynamic viscosity and surface tension of stable graphene oxide and reduced graphene oxide aqueous nanofluids, Journal of Nanofluids, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01820859

S. Halelfadl, P. Estelle, B. Aladag, N. Doner, and T. Mare, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature, Int J Therm Sci, vol.71, pp.111-117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821792

C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Specific heat capacity and density of multi-walled boron nitride nanotubes by chemical vapor deposition, Solid State Commun, vol.151, issue.2, pp.183-186, 2011.

W. Yu and H. Q. Xie, A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, 2012.

S. Chakraborty, I. Sarkar, K. Haldar, S. K. Pal, and S. Chakraborty, Synthesis of Cu-Al layered double hydroxide nanofluid and characterization of its thermal properties, Appl Clay Sci, vol.107, pp.98-108, 2015.

G. Zyla, J. Fal, and P. Estelle, Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN-EG) nanofluids with various size of particles, Int J Heat Mass Tran, vol.113, pp.1189-1199, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544782

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, International Tables of the SurfaceTension of Water, J Phys Chem Ref Data, vol.12, issue.3, pp.817-820, 1983.

D. Cabaleiro, C. Gracia-fernandez, J. L. Legido, and L. Lugo, Specific heat of metal oxide nanofluids at high concentrations for heat transfer, Int J Heat Mass Tran, vol.88, pp.872-879, 2015.

N. S. Mousavi and S. Kumar, Effective heat capacity of ferrofluids -Analytical approach, Int J Therm Sci, vol.84, pp.267-274, 2014.

D. Shin and D. Banerjee, Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic, Int J Heat Mass Tran, vol.74, pp.210-214, 2014.

I. C. Nelson, D. Banerjee, and R. Ponnappan, Flow Loop Experiments Using Polyalphaolefin Nanofluids, J Thermophys Heat Tr, vol.23, issue.4, pp.752-761, 2009.

R. S. Vajjha and D. K. Das, Specific Heat Measurement of Three Nanofluids and Development of New Correlations, J Heat Trans-T Asme, vol.131, issue.7, 2009.

S. Sonawane, K. Patankar, A. Fogla, B. Puranik, U. Bhandarkar et al., An experimental investigation of thermo-physical properties and heat transfer performance of Al2O3-Aviation Turbine Fuel nanofluids, Appl Therm Eng, pp.2841-2849, 2011.

V. Kumaresan and R. Velraj, Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids, Thermochim Acta, vol.545, pp.180-186, 2012.

E. V. Timofeeva, W. H. Yu, D. M. France, D. Singh, and J. L. Routbort, Nanofluids for heat transfer: an engineering approach, Nanoscale Res Lett, vol.6, p.182, 2011.

T. Aguilar, J. Navas, A. Sanchez-coronilla, E. I. Martin, J. J. Gallardo et al., Investigation of enhanced thermal properties in NiO-based nanofluids for concentrating solar power applications: A molecular dynamics and experimental analysis, Applied Energy, vol.211, pp.677-688, 2018.

J. C. Maxwell, A treatise on electricity and magnetism, p.1892

C. C. Tang, Y. Bando, C. H. Liu, S. S. Fan, J. Zhang et al., Thermal conductivity of nanostructured boron nitride materials, J Phys Chem B, vol.110, issue.21, pp.10354-10357, 2006.

R. L. Hamilton and O. K. Crosser, Thermal Conductivity of Heterogeneous 2-Component Systems, Ind Eng Chem Fund, vol.1, issue.3, p.187, 1962.

Q. Z. Xue, Model for thermal conductivity of carbon nanotube-based composites, Physica B, vol.368, issue.1-4, pp.302-307, 2005.

Y. M. Xuan, Q. Li, and W. F. Hu, Aggregation structure and thermal conductivity of nanofluids, Aiche J, vol.49, issue.4, pp.1038-1043, 2003.

J. Koo and C. Kleinstreuer, A new thermal conductivity model for nanofluids, J Nanopart Res, vol.6, issue.6, pp.577-588, 2004.

R. S. Vajjha and D. K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int J Heat Mass Tran, vol.52, pp.4675-4682, 2009.

R. S. Vajjha and D. K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, Int J Heat Mass Tran, vol.55, pp.4063-4078, 2012.

, Stable nanofluids based on boron nitride nanotubes were prepared and analysed Isobaric specific heat increased by 8% and thermal conductivity by 10 % Newtonian behaviour was found for nanofluids with no significant increase in viscosity Surface tension was mainly governed by the presence of Triton X-100 as surfactant Rheological behaviour is not changed with nanoparticle content