J. M. Banales, V. Cardinale, and G. Carpino, Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA), Nat Rev Gastroenterol Hepatol, vol.13, issue.5, pp.261-280, 2016.

H. Haga, I. K. Yan, K. Takahashi, J. Wood, A. Zubair et al., Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth, J Extracell Vesicles, vol.4, p.24900, 2015.

H. Dokduang, A. Techasen, and N. Namwat, STATs profiling reveals predominantly-activated STAT3 in cholangiocarcinoma genesis and progression, J Hepatobiliary Pancreat Sci, vol.21, issue.10, pp.767-776, 2014.

X. W. Yang, L. Li, and G. J. Hou, STAT3 overexpression promotes metastasis in intrahepatic cholangiocarcinoma and correlates negatively with surgical outcome, Oncotarget, vol.8, issue.5, pp.7710-7721, 2017.

C. Zhang, H. Xu, and Z. Zhou, Blocking of the EGFR-STAT3 signaling pathway through afatinib treatment inhibited the intrahepatic cholangiocarcinoma, Exp Ther Med, vol.15, issue.6, pp.4995-5000, 2018.

F. Zhang, L. Li, and X. Yang, Expression and activation of EGFR and STAT3 during the multistage carcinogenesis of intrahepatic cholangiocarcinoma induced by 3'-methyl-4 dimethylaminoazobenzene in rats, J Toxicol Pathol, vol.28, issue.2, pp.79-87, 2015.

H. Isomoto, S. Kobayashi, and N. W. Werneburg, Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells, Hepatology, vol.42, issue.6, pp.1329-1338, 2005.

N. T. Huyen, V. Prachayasittikul, and W. Chan-on, Anoikis-resistant cholangiocarcinoma cells display aggressive characteristics and increase STAT3 activation, J Hepatobiliary Pancreat Sci, vol.23, issue.7, pp.397-405, 2016.

J. Park, L. Tadlock, G. J. Gores, and T. Patel, Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line, Hepatology, vol.30, issue.5, pp.1128-1133, 1999.

S. Kobayashi, N. W. Werneburg, S. F. Bronk, S. H. Kaufmann, and G. J. Gores, Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells, Gastroenterology, vol.128, issue.7, pp.2054-2065, 2005.

H. Isomoto, Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangio-carcinoma due to SOCS3 epigenetic silencing, Digestion, vol.79, pp.2-8, 2009.

H. Wehbe, R. Henson, F. Meng, J. Mize-berge, and T. Patel, Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression, Cancer Res, vol.66, issue.21, pp.10517-10524, 2006.

S. Dooley and P. Ten-dijke, TGF-beta in progression of liver disease, Cell Tissue Res, vol.347, issue.1, pp.245-256, 2012.

C. R. Churi, R. Shroff, and Y. Wang, Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications, PLoS One, vol.9, issue.12, p.115383, 2014.

C. K. Ong, C. Subimerb, and C. Pairojkul, Exome sequencing of liver fluke-associated cholangiocarcinoma, Nat Genet, vol.44, issue.6, pp.690-693, 2012.

C. P. Wardell, M. Fujita, and T. Yamada, Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations, J Hepatol, vol.68, issue.5, pp.959-969, 2018.

Y. K. Kang, W. H. Kim, and J. J. Jang, Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma, Hum Pathol, vol.33, issue.9, pp.877-883, 2002.

L. Sulpice, M. Rayar, and M. Desille, Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma, Hepatology, vol.58, issue.6, pp.1992-2000, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01068717

J. B. Andersen, B. Spee, and B. R. Blechacz, Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors, Gastroenterology, vol.142, issue.4, pp.1021-1031, 2012.

C. Benckert, J. S. Cramer, and T. , Transforming growth factor beta 1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells, Cancer Res, vol.63, issue.5, pp.1083-1092, 2003.

, Accepted Article 21

Y. Zen, K. Harada, and M. Sasaki, Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-beta1 by overexpression of cyclin D1, Lab Invest, vol.85, issue.4, pp.572-581, 2005.

J. P. Lu, J. Q. Mao, and M. S. Li, In situ detection of TGF betas, TGF beta receptor II mRNA and telomerase activity in rat cholangiocarcinogenesis, World J Gastroenterol, vol.9, issue.3, pp.590-594, 2003.

K. Araki, T. Shimura, and H. Suzuki, E/N-cadherin switch mediates cancer progression via TGFbeta-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma, Br J Cancer, vol.105, issue.12, pp.1885-1893, 2011.

Y. Sato, K. Harada, and K. Itatsu, Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma, Am J Pathol, vol.177, issue.1, pp.141-152, 2010.

K. Duangkumpha, A. Techasen, and W. Loilome, BMP-7 blocks the effects of TGF-betainduced EMT in cholangiocarcinoma, Tumour Biol, vol.35, issue.10, pp.9667-9676, 2014.

J. Y. Seok, D. C. Na, and H. G. Woo, A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition, Hepatology, vol.55, issue.6, pp.1776-1786, 2012.

X. Mu, J. P. Pradere, and S. Affo, Epithelial Transforming Growth Factor-beta Signaling Does Not Contribute to Liver Fibrosis but Protects Mice From Cholangiocarcinoma, Gastroenterology, vol.150, issue.3, pp.720-733, 2016.

S. Rizvi and M. J. Borad, The rise of the FGFR inhibitor in advanced biliary cancer: the next cover of time magazine?, J Gastrointest Oncol, vol.7, issue.5, pp.789-796, 2016.

Y. Arai, Y. Totoki, and F. Hosoda, Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma, Hepatology, vol.59, issue.4, pp.1427-1434, 2014.

M. J. Borad, M. D. Champion, and J. B. Egan, Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma, PLoS Genet, vol.10, issue.2, p.1004135, 2014.

F. Farshidfar, S. Zheng, and M. C. Gingras, Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles, Cell Rep, vol.18, issue.11, pp.2780-2794, 2017.

R. P. Graham, B. Fritcher, E. G. Pestova, and E. , Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma, Hum Pathol, vol.45, issue.8, pp.1630-1638, 2014.

J. S. Ross, K. Wang, and L. Gay, New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing, Oncologist, vol.19, issue.3, pp.235-242, 2014.

, Accepted Article 34

Y. M. Wu, F. Su, and S. Kalyana-sundaram, Identification of targetable FGFR gene fusions in diverse cancers, Cancer Discov, vol.3, issue.6, pp.636-647, 2013.

P. Jain, L. F. Surrey, and J. Straka, Novel FGFR2-INA fusion identified in two low-grade mixed neuronal-glial tumors drives oncogenesis via MAPK and PI3K/mTOR pathway activation, Acta Neuropathol, vol.136, issue.1, pp.167-169, 2018.

D. Lamberti, G. Cristinziano, and M. Porru, HSP90 inhibition drives degradation of FGFR2 fusion proteins: implications for treatment of cholangiocarcinoma, Hepatology, 2018.

B. Goeppert, L. Frauenschuh, and M. Renner, BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma, Mod Pathol, vol.27, issue.7, pp.1028-1034, 2014.

M. Dankner, A. Rose, S. Rajkumar, P. M. Siegel, and I. R. Watson, Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations, Oncogene, vol.37, issue.24, pp.3183-3199, 2018.

A. Saborowski, M. Saborowski, M. A. Davare, B. J. Druker, D. S. Klimstra et al., Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene and therapeutic target, Proc Natl Acad Sci, vol.110, issue.48, pp.19513-19518, 2013.

H. Nakagawa, N. Suzuki, and Y. Hirata, Biliary epithelial injury-induced regenerative response by IL-33 promotes cholangiocarcinogenesis from peribiliary glands, Proc Natl Acad Sci, vol.114, pp.3806-3815, 2017.

A. Pellat, J. Vaquero, and L. Fouassier, Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology, Hepatology, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01789829

A. Claperon, N. Guedj, and M. Mergey, Loss of EBP50 stimulates EGFR activity to induce EMT phenotypic features in biliary cancer cells, Oncogene, vol.31, issue.11, pp.1376-1388, 2012.

A. Claperon, M. Mergey, N. Ho-bouldoires, and T. H. , EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition, J Hepatol, vol.61, issue.2, pp.325-332, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514460

W. Treekitkarnmongkol and T. Suthiphongchai, High expression of ErbB2 contributes to cholangiocarcinoma cell invasion and proliferation through AKT/p70S6K, World J Gastroenterol, vol.16, issue.32, pp.4047-4054, 2010.

J. H. Yoon, G. Y. Gwak, H. S. Lee, S. F. Bronk, N. W. Werneburg et al., Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells, J Hepatol, vol.41, issue.5, pp.808-814, 2004.

M. Reich, K. Deutschmann, and A. Sommerfeld, TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro, Gut, vol.65, issue.3, pp.487-501, 2016.

L. Finzi, M. X. Shao, F. Paye, C. Housset, and J. A. Nadel, Lipopolysaccharide initiates a positive feedback of epidermal growth factor receptor signaling by prostaglandin E2 in human biliary carcinoma cells, J Immunol, vol.182, issue.4, pp.2269-2276, 2009.

N. Ho-bouldoires, T. H. Claperon, A. Mergey, and M. , Mitogen-activated protein kinaseactivated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells, Free Radic Biol Med, vol.89, pp.34-46, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176572

A. Claperon, M. Mergey, and L. Aoudjehane, Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor, Hepatology, vol.58, issue.6, pp.2001-2011, 2013.

P. Onori, C. Wise, and E. Gaudio, Secretin inhibits cholangiocarcinoma growth via dysregulation of the cAMP-dependent signaling mechanisms of secretin receptor, Int J Cancer, vol.127, issue.1, pp.43-54, 2010.

M. Korner, G. M. Hayes, and R. Rehmann, Secretin receptors in the human liver: expression in biliary tract and cholangiocarcinoma, but not in hepatocytes or hepatocellular carcinoma, J Hepatol, vol.45, issue.6, pp.825-835, 2006.

H. Francis, F. Meng, E. Gaudio, and G. Alpini, Histamine regulation of biliary proliferation, J Hepatol, vol.56, issue.5, pp.1204-1206, 2012.

H. Francis, S. Demorrow, and J. Venter, Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma, Gut, vol.61, issue.5, pp.753-764, 2012.

C. Johnson, V. Huynh, and L. Hargrove, Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell FactorDependent Signaling, Am J Pathol, vol.186, issue.1, pp.123-133, 2016.

H. Francis, P. Onori, and E. Gaudio, H3 histamine receptor-mediated activation of protein kinase Calpha inhibits the growth of cholangiocarcinoma in vitro and in vivo, Mol Cancer Res, vol.7, issue.10, pp.1704-1713, 2009.

L. Kennedy, L. Hargrove, and J. Demieville, Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2(-/-) mice and human cholangiocarcinoma tumorigenesis, Hepatology, 2018.

F. Meng, Y. Han, D. Staloch, T. Francis, A. Stokes et al., The H4 histamine receptor agonist, clobenpropit, suppresses human cholangiocarcinoma progression by disruption of epithelial mesenchymal transition and tumor metastasis, Hepatology, vol.54, issue.5, pp.1718-1728, 2011.

H. Jones, L. Hargrove, and L. Kennedy, Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2(-/-) mice, Hepatology, vol.64, issue.4, pp.1202-1216, 2016.

M. Morales-ruiz, A. Santel, J. Ribera, and W. Jimenez, The Role of Akt in Chronic Liver Disease and Liver Regeneration, Semin Liver Dis, vol.37, issue.1, pp.11-16, 2017.

, Accepted Article 60

B. Fan, Y. Malato, and D. F. Calvisi, Cholangiocarcinomas can originate from hepatocytes in mice, J Clin Invest, vol.122, issue.8, pp.2911-2915, 2012.

S. Zhang, X. Song, and D. Cao, Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice, J Hepatol, vol.67, issue.6, pp.1194-1203, 2017.

N. Guedj, Q. Zhan, and M. Perigny, Comparative protein expression profiles of hilar and peripheral hepatic cholangiocarcinomas, J Hepatol, vol.51, issue.1, pp.93-101, 2009.

J. Y. Chung, S. M. Hong, B. Y. Choi, H. Cho, Y. E. Hewitt et al., The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma, Clin Cancer Res, vol.15, issue.2, pp.660-667, 2009.

Y. Kittirat, A. Techasen, and S. Thongchot, Suppression of 14-3-3zeta in cholangiocarcinoma cells inhibits proliferation through attenuated Akt activity, enhancing chemosensitivity to gemcitabine, Oncol Lett, vol.15, issue.1, pp.347-353, 2018.

Y. Zhang, J. G. Han, and S. , Tip60 Suppresses Cholangiocarcinoma Proliferation and Metastasis via PI3k-AKT, Cell Physiol Biochem, vol.50, issue.2, pp.612-628, 2018.

C. Wang, Z. P. Mao, and L. Wang, Long non-coding RNA MALAT1 promotes cholangiocarcinoma cell proliferation and invasion by activating PI3K/Akt pathway, Neoplasma, vol.64, issue.5, pp.725-731, 2017.

R. F. Schwabe and T. Luedde, Apoptosis and necroptosis in the liver: a matter of life and death, Nat Rev Gastroenterol Hepatol, vol.15, issue.12, pp.738-752, 2018.

J. Gautheron, M. Vucur, and F. Reisinger, A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis, EMBO Mol Med, vol.6, issue.8, pp.1062-1074, 2014.

M. B. Afonso, P. M. Rodrigues, and T. Carvalho, Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis, Clin Sci (Lond), vol.129, issue.8, pp.721-739, 2015.

M. B. Afonso, P. M. Rodrigues, and A. L. Simao, miRNA-21 ablation protects against liver injury and necroptosis in cholestasis, Cell Death Differ, vol.25, issue.5, pp.857-872, 2018.

M. B. Afonso, P. M. Rodrigues, and A. L. Simao, Activation of necroptosis in human and experimental cholestasis, Cell Death Dis, vol.7, issue.9, p.2390, 2016.

L. Seifert, G. Werba, and S. Tiwari, The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression, Nature, vol.532, issue.7598, pp.245-249, 2016.

B. Strilic, L. Yang, and J. Albarran-juarez, Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis, Nature, vol.536, issue.7615, pp.215-218, 2016.

K. Hanggi, L. Vasilikos, and A. F. Valls, RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function, Cell Death Dis, vol.8, issue.2, p.2588, 2017.

, Accepted Article 75

M. Seehawer, F. Heinzmann, D. 'artista, and L. , Necroptosis microenvironment directs lineage commitment in liver cancer, Nature, vol.562, issue.7725, pp.69-75, 2018.

F. Geisler, F. Nagl, and P. K. Mazur, Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice, Hepatology, vol.48, issue.2, pp.607-616, 2008.

Y. Zong, A. Panikkar, and J. Xu, Notch signaling controls liver development by regulating biliary differentiation, Development, vol.136, issue.10, pp.1727-1739, 2009.

N. Takebe, L. Miele, and P. J. Harris, Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update, Nat Rev Clin Oncol, vol.12, issue.8, pp.445-464, 2015.

S. Aoki, M. Mizuma, and Y. Takahashi, Aberrant activation of Notch signaling in extrahepatic cholangiocarcinoma: clinicopathological features and therapeutic potential for cancer stem cell-like properties, BMC Cancer, vol.16, issue.1, p.854, 2016.

N. Singrang, S. Kittisenachai, S. Roytrakul, J. Svasti, and T. Kangsamaksin, NOTCH1 regulates the viability of cholangiocarcinoma cells via 14-3-3 theta, J Cell Commun Signal, 2018.

Q. Zhou, Y. Wang, B. Peng, L. Liang, and J. Li, The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma, BMC Cancer, vol.13, p.244, 2013.

J. Wang, M. Dong, and Z. Xu, Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice, Oncogene, vol.37, issue.24, pp.3229-3242, 2018.

R. V. Guest, L. Boulter, and B. J. Dwyer, Notch3 drives development and progression of cholangiocarcinoma, Proc Natl Acad Sci U S A, vol.113, issue.43, pp.12250-12255, 2016.

W. R. Wu, X. D. Shi, and R. Zhang, Clinicopathological significance of aberrant Notch receptors in intrahepatic cholangiocarcinoma, Int J Clin Exp Pathol, vol.7, issue.6, pp.3272-3279, 2014.

L. Che, B. Fan, and M. G. Pilo, Jagged 1 is a major Notch ligand along cholangiocarcinoma development in mice and humans, Oncogenesis, vol.5, issue.12, p.274, 2016.

J. E. Hooper and M. P. Scott, Communicating with Hedgehogs, Nat Rev Mol Cell Biol, vol.6, issue.4, pp.306-317, 2005.

M. V. Machado and A. M. Diehl, Hedgehog signalling in liver pathophysiology, J Hepatol, vol.68, issue.3, pp.550-562, 2018.

Y. Jung, S. J. Mccall, Y. X. Li, and A. M. Diehl, Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis, Hepatology, vol.45, issue.5, pp.1091-1096, 2007.

L. Tang, Y. X. Tan, and B. G. Jiang, The prognostic significance and therapeutic potential of hedgehog signaling in intrahepatic cholangiocellular carcinoma, Clin Cancer Res, vol.19, issue.8, pp.2014-2024, 2013.

R. Al-bahrani, S. Nagamori, R. Leng, A. Petryk, and C. Sergi, Differential Expression of Sonic Hedgehog Protein in Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma, Pathol Oncol Res, vol.21, issue.4, pp.901-908, 2015.

N. Razumilava, S. A. Gradilone, and R. L. Smoot, Non-canonical Hedgehog signaling contributes to chemotaxis in cholangiocarcinoma, J Hepatol, vol.60, issue.3, pp.599-605, 2014.

M. F. Bijlsma, H. Damhofer, and H. Roelink, Hedgehog-stimulated chemotaxis is mediated by smoothened located outside the primary cilium, Sci Signal, vol.5, issue.238, p.60, 2012.

A. H. Polizio, P. Chinchilla, X. Chen, S. Kim, D. R. Manning et al., Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration, J Biol Chem, vol.286, issue.22, pp.19589-19596, 2011.

N. Tokumoto, S. Ikeda, and Y. Ishizaki, Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas, Int J Oncol, vol.27, issue.4, pp.973-980, 2005.

S. Yothaisong, M. Thanee, and N. Namwat, Opisthorchis viverrini infection activates the PI3K/ AKT/PTEN and Wnt/beta-catenin signaling pathways in a Cholangiocarcinogenesis model, Asian Pac J Cancer Prev, vol.15, issue.23, pp.10463-10468, 2014.

L. Boulter, R. V. Guest, and T. J. Kendall, WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited, J Clin Invest, vol.125, issue.3, pp.1269-1285, 2015.

M. D. Thompson and S. P. Monga, WNT/beta-catenin signaling in liver health and disease, Hepatology, vol.45, issue.5, pp.1298-1305, 2007.

A. Gentilini, M. Pastore, F. Marra, and C. Raggi, The Role of Stroma in Cholangiocarcinoma: The Intriguing Interplay between Fibroblastic Component, Immune Cell Subsets and Tumor Epithelium, Int J Mol Sci, vol.19, issue.10, 2018.

W. Loilome, P. Bungkanjana, and A. Techasen, Activated macrophages promote Wnt/betacatenin signaling in cholangiocarcinoma cells, Tumour Biol, vol.35, issue.6, pp.5357-5367, 2014.

M. Merino-azpitarte, E. Lozano, and M. J. Perugorria, SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma, J Hepatol, vol.67, issue.1, pp.72-83, 2017.

L. Dang and S. M. Su, Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development, Annu Rev Biochem, vol.86, pp.305-331, 2017.

C. Nepal, C. J. O'rourke, and D. Oliveira, Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma, Hepatology, vol.68, issue.3, pp.949-963, 2018.

S. K. Saha, C. A. Parachoniak, and K. S. Ghanta, Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer, Nature, vol.513, issue.7516, pp.110-114, 2014.

, Accepted Article 104

Y. Jiao, T. M. Pawlik, and R. A. Anders, Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas, Nat Genet, vol.45, issue.12, pp.1470-1473, 2013.

C. Hodges, J. G. Kirkland, and G. R. Crabtree, The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer, Cold Spring Harb Perspect Med, vol.6, issue.8, 2016.

R. Mathur, ARID1A loss in cancer: Towards a mechanistic understanding, Pharmacol Ther, vol.190, pp.15-23, 2018.

J. Shen, Z. Ju, and W. Zhao, ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade, Nat Med, vol.24, issue.5, pp.556-562, 2018.

J. Shen, Y. Peng, and L. Wei, ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors, Cancer Discov, vol.5, issue.7, pp.752-767, 2015.

L. Chang, L. Azzolin, D. Biagio, and D. , The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ, Nature, vol.563, issue.7730, pp.265-269, 2018.

C. Luchini, S. A. Robertson, and S. M. Hong, PBRM1 loss is a late event during the development of cholangiocarcinoma, Histopathology, vol.71, issue.3, pp.375-382, 2017.

A. Kakarougkas, A. Ismail, and A. L. Chambers, Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin, Mol Cell, vol.55, issue.5, pp.723-732, 2014.

S. Hopson and M. J. Thompson, BAF180: Its Roles in DNA Repair and Consequences in Cancer, ACS Chem Biol, vol.12, issue.10, pp.2482-2490, 2017.

I. H. Ismail, R. Davidson, J. P. Gagne, Z. Z. Xu, G. G. Poirier et al., Germline mutations in BAP1 impair its function in DNA double-strand break repair, Cancer Res, vol.74, issue.16, pp.4282-4294, 2014.

H. Yu, H. Pak, and I. Hammond-martel, Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair, Proc Natl Acad Sci, vol.111, issue.1, pp.285-290, 2014.

M. Carbone, H. Yang, H. I. Pass, T. Krausz, J. R. Testa et al., BAP1 and cancer, Nat Rev Cancer, vol.13, issue.3, pp.153-159, 2013.

R. Pilarski, C. M. Cebulla, and J. B. Massengill, Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases, Genes Chromosomes Cancer, vol.53, issue.2, pp.177-182, 2014.

X. X. Chen, Y. Yin, and J. W. Cheng, BAP1 acts as a tumor suppressor in intrahepatic cholangiocarcinoma by modulating the ERK1/2 and JNK/c-Jun pathways, Cell Death Dis, vol.9, issue.10, p.1036, 2018.

J. L. Mott and G. J. Gores, Targeting IL-6 in cholangiocarcinoma therapy, Am J Gastroenterol, vol.102, issue.10, pp.2171-2172, 2007.

Y. K. Cheon, Y. D. Cho, and J. H. Moon, Diagnostic utility of interleukin-6 (IL-6) for primary bile duct cancer and changes in serum IL-6 levels following photodynamic therapy, Am J Gastroenterol, vol.102, issue.10, pp.2164-2170, 2007.

F. Kleinegger, E. Hofer, and C. Wodlej, Pharmacologic IL-6Ralpha inhibition in cholangiocarcinoma promotes cancer cell growth and survival, Biochim Biophys Acta Mol Basis Dis, vol.1865, issue.2, pp.308-321, 2018.

M. H. Hu, L. J. Chen, and Y. L. Chen, Targeting SHP-1-STAT3 signaling: A promising therapeutic approach for the treatment of cholangiocarcinoma, Oncotarget, vol.8, issue.39, pp.65077-65089, 2017.

C. Saengboonmee, W. Seubwai, U. Cha'on, K. Sawanyawisuth, S. Wongkham et al.,

, Metformin Exerts Antiproliferative and Anti-metastatic Effects Against Cholangiocarcinoma Cells by Targeting STAT3 and NF-kB, Anticancer Res, vol.37, issue.1, pp.115-123, 2017.

N. Puthdee, W. Seubwai, and K. Vaeteewoottacharn, Berberine Induces Cell Cycle Arrest in Cholangiocarcinoma Cell Lines via Inhibition of NF-kappaB and STAT3 Pathways, Biol Pharm Bull, vol.40, issue.6, pp.751-757, 2017.

N. Yang, F. Han, and H. Cui, Matrine suppresses proliferation and induces apoptosis in human cholangiocarcinoma cells through suppression of JAK2/STAT3 signaling, Pharmacol Rep, vol.67, issue.2, pp.388-393, 2015.

Z. Lu, J. Wang, and T. Zheng, FTY720 inhibits proliferation and epithelial-mesenchymal transition in cholangiocarcinoma by inactivating STAT3 signaling, BMC Cancer, vol.14, p.783, 2014.

P. Tanjak, A. Thiantanawat, P. Watcharasit, and J. Satayavivad, Genistein reduces the activation of AKT and EGFR, and the production of IL6 in cholangiocarcinoma cells involving estrogen and estrogen receptors, Int J Oncol, vol.53, issue.1, pp.177-188, 2018.

F. Ke, Z. Wang, and X. Song, Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFkappaB pathways in cholangiocarcinoma cells, Drug Des Devel Ther, vol.11, pp.1753-1766, 2017.

A. M. Lustri, D. Matteo, S. Fraveto, and A. , TGF-beta signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures, PLoS One, vol.12, issue.9, p.183932, 2017.

H. Ling, E. Roux, and D. Hempel, Transforming growth factor beta neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats, PLoS One, vol.8, issue.1, p.54499, 2013.

L. Verlingue, D. Malka, and A. Allorant, Precision medicine for patients with advanced biliary tract cancers: An effective strategy within the prospective MOSCATO-01 trial, Eur J Cancer, vol.87, pp.122-130, 2017.

M. Javle, M. Lowery, and R. T. Shroff, Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma, J Clin Oncol, vol.36, issue.3, pp.276-282, 2018.

V. Mazzaferro, B. F. El-rayes, D. D. Busset, and M. , ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma, Br J Cancer, 2018.

J. W. Valle, A. Lamarca, L. Goyal, J. Barriuso, and A. X. Zhu, New Horizons for Precision Medicine in Biliary Tract Cancers, Cancer Discov, vol.7, issue.9, pp.943-962, 2017.

D. M. Hyman, I. Puzanov, and V. Subbiah, Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations, N Engl J Med, vol.373, issue.8, pp.726-736, 2015.

A. Prahallad, C. Sun, and S. Huang, Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR, Nature, vol.483, issue.7387, pp.100-103, 2012.

A. Loaiza-bonilla, C. E. Furth, E. O'hara, M. Morrissette, and J. , Dramatic response to dabrafenib and trametinib combination in a BRAF V600E-mutated cholangiocarcinoma: implementation of a molecular tumour board and next-generation sequencing for personalized medicine, Ecancermedicalscience, vol.8, p.479, 2014.

V. Lavingia and M. Fakih, Impressive response to dual BRAF and MEK inhibition in patients with BRAF mutant intrahepatic cholangiocarcinoma-2 case reports and a brief review, J Gastrointest Oncol, vol.7, issue.6, pp.98-102, 2016.

C. Robert, B. Karaszewska, and J. Schachter, Improved overall survival in melanoma with combined dabrafenib and trametinib, N Engl J Med, vol.372, issue.1, pp.30-39, 2015.

S. Yabuuchi, Y. Katayose, and A. Oda, ZD1839 (IRESSA) stabilizes p27Kip1 and enhances radiosensitivity in cholangiocarcinoma cell lines, Anticancer Res, vol.29, issue.4, pp.1169-1180, 2009.

H. Ariyama, B. Qin, and E. Baba, Gefitinib, a selective EGFR tyrosine kinase inhibitor, induces apoptosis through activation of Bax in human gallbladder adenocarcinoma cells, J Cell Biochem, vol.97, issue.4, pp.724-734, 2006.

Z. Zhang, R. A. Oyesanya, D. J. Campbell, J. A. Almenara, J. L. Dewitt et al., Preclinical assessment of simultaneous targeting of epidermal growth factor receptor (ErbB1) and ErbB2 as a strategy for cholangiocarcinoma therapy, Hepatology, vol.52, issue.3, pp.975-986, 2010.

M. Wiedmann, J. Feisthammel, and T. Bluthner, Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib, Anticancer Drugs, vol.17, issue.7, pp.783-795, 2006.

Y. Pignochino, I. Sarotto, and C. Peraldo-neia, Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas, BMC Cancer, vol.10, p.631, 2010.

A. Jimeno, B. Rubio-viqueira, and M. L. Amador, Epidermal growth factor receptor dynamics influences response to epidermal growth factor receptor targeted agents, Cancer Res, vol.65, issue.8, pp.3003-3010, 2005.

G. Cavalloni, C. Peraldo-neia, and C. Varamo, Preclinical activity of EGFR and MEK1/2 inhibitors in the treatment of biliary tract carcinoma, Oncotarget, vol.7, issue.32, pp.52354-52363, 2016.

B. Herberger, W. Berger, and H. Puhalla, Simultaneous blockade of the epidermal growth factor receptor/mammalian target of rapamycin pathway by epidermal growth factor receptor inhibitors and rapamycin results in reduced cell growth and survival in biliary tract cancer cells, Mol Cancer Ther, vol.8, issue.6, pp.1547-1556, 2009.

D. Yoshikawa, H. Ojima, and A. Kokubu, Vandetanib (ZD6474), an inhibitor of VEGFR and EGFR signalling, as a novel molecular-targeted therapy against cholangiocarcinoma, Br J Cancer, vol.100, issue.8, pp.1257-1266, 2009.

L. W. Goff, D. B. Cardin, and J. G. Whisenant, A phase I trial investigating pulsatile erlotinib in combination with gemcitabine and oxaliplatin in advanced biliary tract cancers, Invest New Drugs, vol.35, issue.1, pp.95-104, 2017.

F. Ewald, N. Grabinski, and A. Grottke, Combined targeting of AKT and mTOR using MK-2206 and RAD001 is synergistic in the treatment of cholangiocarcinoma, Int J Cancer, vol.133, issue.9, pp.2065-2076, 2013.

S. Yothaisong, H. Dokduang, and A. Techasen, Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy, Tumour Biol, vol.34, issue.6, pp.3637-3648, 2013.

F. Ewald, D. Norz, A. Grottke, B. T. Hofmann, B. Nashan et al., Dual Inhibition of PI3K-AKTmTOR-and RAF-MEK-ERK-signaling is synergistic in cholangiocarcinoma and reverses acquired resistance to MEK-inhibitors, Invest New Drugs, vol.32, issue.6, pp.1144-1154, 2014.

K. Yokoi, A. Kobayashi, and H. Motoyama, Survival pathway of cholangiocarcinoma via AKT/mTOR signaling to escape RAF/MEK/ERK pathway inhibition by sorafenib, Oncol Rep, vol.39, issue.2, pp.843-850, 2018.

Z. Zhang, G. H. Lai, and A. E. Sirica, Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation, Hepatology, vol.39, issue.4, pp.1028-1037, 2004.

P. A. Harris, S. B. Berger, and J. U. Jeong, Discovery of a First-in-Class Receptor Interacting Protein 1 (RIP1) Kinase Specific Clinical Candidate (GSK2982772) for the Treatment of Inflammatory Diseases, J Med Chem, vol.60, issue.4, pp.1247-1261, 2017.

A. Fauster, M. Rebsamen, and K. V. Huber, A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis, Cell Death Dis, vol.6, p.1767, 2015.

J. X. Li, J. M. Feng, and Y. Wang, The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury, Cell Death Dis, vol.5, p.1278, 2014.

G. B. Koo, M. J. Morgan, and D. G. Lee, Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics, Cell Res, vol.25, issue.6, pp.707-725, 2015.

B. Xu, M. Xu, and Y. Tian, Matrine induces RIP3-dependent necroptosis in cholangiocarcinoma cells, Cell Death Discov, vol.3, p.16096, 2017.

M. Aste-amezaga, N. Zhang, and J. E. Lineberger, Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors, PLoS One, vol.5, issue.2, p.9094, 2010.

Y. Wu, C. Cain-hom, and L. Choy, Therapeutic antibody targeting of individual Notch receptors, Nature, vol.464, issue.7291, pp.1052-1057, 2010.

I. Noguera-troise, C. Daly, and N. J. Papadopoulos, Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis, Nature, vol.444, issue.7122, pp.1032-1037, 2006.

R. Olsauskas-kuprys, A. Zlobin, and C. Osipo, Gamma secretase inhibitors of Notch signaling, Onco Targets Ther, vol.6, pp.943-955, 2013.

I. Hayashi, S. Takatori, and Y. Urano, Neutralization of the gamma-secretase activity by monoclonal antibody against extracellular domain of nicastrin, Oncogene, vol.31, issue.6, pp.787-798, 2012.

C. Massard, A. Azaro, and J. C. Soria, First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer, Ann Oncol, vol.29, issue.9, pp.1911-1917, 2018.

J. Garcia, J. Cortes, A. Stathis, R. Mous, E. Lopez-miranda et al., First-in-human phase 1-2A study of CB-103, an oral Protein-Protein Interaction Inhibitor targeting pan-NOTCH signalling in advanced solid tumors and blood malignancies, J Clin Oncol, vol.36, issue.15, 2018.

D. M. Berman, S. S. Karhadkar, and A. Maitra, Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours, Nature, vol.425, issue.6960, pp.846-851, 2003.

E. Khatib, M. Kalnytska, A. Palagani, and V. , Inhibition of hedgehog signaling attenuates carcinogenesis in vitro and increases necrosis of cholangiocellular carcinoma, Hepatology, vol.57, issue.3, pp.1035-1045, 2013.

C. D. Fingas, S. F. Bronk, and N. W. Werneburg, Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells, Hepatology, vol.54, issue.6, pp.2076-2088, 2011.

M. Salati, A. Stathis, . Sonidegib, and . Smoothened, SMO) receptor antagonist Oncolytic. Drug Future, vol.39, issue.10, pp.677-684, 2014.

J. R. Eads, S. Stein, and A. B. El-khoueiry, A phase I study of DKN-01 (D), an anti-DKK1 monoclonal antibody, in combination with gemcitabine (G) and cisplatin (C) in patients (pts) for first-line therapy with advanced biliary tract cancer (BTC), J Clin Oncol, vol.35, 2017.

S. K. Saha, J. D. Gordan, and B. P. Kleinstiver, Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma, Cancer Discov, vol.6, issue.7, pp.727-739, 2016.

L. Goyal, S. K. Saha, and L. Y. Liu, Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma, Cancer Discov, vol.7, issue.3, pp.252-263, 2017.

C. J. Ryan, I. Bajrami, and C. J. Lord, Synthetic Lethality and Cancer -Penetrance as the Major Barrier, Trends Cancer, vol.4, issue.10, pp.671-683, 2018.

R. J. Molenaar, T. Radivoyevitch, and Y. Nagata, IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors, Clin Cancer Res, vol.24, issue.7, pp.1705-1715, 2018.

P. L. Sulkowski, C. D. Corso, and N. D. Robinson, 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity, Sci Transl Med, vol.9, issue.375, 2017.

C. Wu, J. Lyu, E. J. Yang, Y. Liu, B. Zhang et al., Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells, Nat Commun, vol.9, issue.1, p.3212, 2018.

C. T. Williamson, R. Miller, and H. N. Pemberton, ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A, Nat Commun, vol.7, p.13837, 2016.

K. W. Mouw, M. S. Goldberg, P. A. Konstantinopoulos, D. 'andrea, and A. D. , DNA Damage and Repair Biomarkers of Immunotherapy Response, Cancer Discov, vol.7, issue.7, pp.675-693, 2017.

A. L. Heeke, M. J. Pishvaian, and F. Lynce, Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types, JCO Precis Oncol, 2018.

D. Miao, C. A. Margolis, and W. Gao, Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma, Science, vol.359, issue.6377, pp.801-806, 2018.

D. Pan, A. Kobayashi, and P. Jiang, A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing, Science, vol.359, issue.6377, pp.770-775, 2018.

D. Morel, G. Almouzni, and J. C. Soria, Postel-Vinay S. Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism, Ann Oncol, vol.28, issue.2, pp.254-269, 2017.

S. Nakagawa, Y. Sakamoto, and H. Okabe, Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells, Oncol Rep, vol.31, issue.2, pp.983-988, 2014.

P. Martinez-becerra, J. Vaquero, and M. R. Romero, No correlation between the expression of FXR and genes involved in multidrug resistance phenotype of primary liver tumors, Mol Pharm, vol.9, issue.6, pp.1693-1704, 2012.

J. Vaquero, M. J. Monte, M. Dominguez, J. Muntane, and J. J. Marin, Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition, Biochem Pharmacol, vol.86, issue.7, pp.926-939, 2013.

O. Erice, I. Labiano, and A. Arbelaiz, Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression, Biochim Biophys Acta Mol Basis Dis, vol.1864, issue.4, pp.1335-1344, 2018.

, Accepted Article 187

E. Gonzalez-sanchez, D. Firrincieli, C. Housset, and N. Chignard, Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis, Biochim Biophys Acta Mol Basis Dis, vol.1863, issue.7, pp.1699-1708, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510262

I. Barone, V. Vircillo, and C. Giordano, Activation of Farnesoid X Receptor impairs the tumorpromoting function of breast cancer-associated fibroblasts, Cancer Lett, vol.437, pp.89-99, 2018.

J. Marin, E. Lozano, and E. Herraez, Chemoresistance and chemosensitization in cholangiocarcinoma, Biochim Biophys Acta Mol Basis Dis, vol.1864, issue.4, pp.1444-1453, 2018.

O. Briz, M. J. Perez, and J. Marin, Further understanding of mechanisms involved liver cancer chemoresistance, Hepatoma Research, vol.3, pp.22-26, 2017.

E. Herraez, E. Lozano, and R. I. Macias, Expression of SLC22A1 variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib, Hepatology, vol.58, issue.3, pp.1065-1073, 2013.

R. Al-abdulla, E. Lozano, and R. Macias, Genetic and epigenetic bases of the relationship between reduced OCT1 expression and poor response to sorafenib in hepatocellular carcinoma and cholangiocarcinoma, JOURNAL OF HEPATOLOGY, vol.66, pp.462-463, 2017.

J. Marin, E. Lozano, O. Briz, R. Al-abdulla, M. A. Serrano et al., Molecular Bases of Chemoresistance in Cholangiocarcinoma, Curr Drug Targets, vol.18, issue.8, pp.889-900, 2017.

I. Borbath, L. Verbrugghe, and R. Lai, Human equilibrative nucleoside transporter 1 (hENT1) expression is a potential predictive tool for response to gemcitabine in patients with advanced cholangiocarcinoma, Eur J Cancer, vol.48, issue.7, pp.990-996, 2012.

L. Cao, M. Duchrow, U. Windhovel, P. Kujath, H. P. Bruch et al., Expression of MDR1 mRNA and encoding P-glycoprotein in archival formalin-fixed paraffin-embedded gall bladder cancer tissues, Eur J Cancer, vol.34, issue.10, pp.1612-1617, 1998.

N. Tepsiri, L. Chaturat, and B. Sripa, Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines, World J Gastroenterol, vol.11, issue.18, pp.2748-2753, 2005.

U. Srimunta, K. Sawanyawisuth, and R. Kraiklang, High expression of ABCC1 indicates poor prognosis in intrahepatic cholangiocarcinoma, Asian Pac J Cancer Prev, vol.13, pp.125-130, 2012.

C. Hahnvajanawong, J. Chaiyagool, and W. Seubwai, Orotate phosphoribosyl transferase mRNA expression and the response of cholangiocarcinoma to 5-fluorouracil, World J Gastroenterol, vol.18, issue.30, pp.3955-3961, 2012.

P. Srijiwangsa, S. Ponnikorn, N. -. Bangchang, and K. , Effect of beta-Eudesmol on NQO1 suppressionenhanced sensitivity of cholangiocarcinoma cells to chemotherapeutic agents, BMC Pharmacol Toxicol, vol.19, issue.1, p.32, 2018.

C. Peraldo-neia, G. Cavalloni, and E. Fenocchio, Prognostic and predictive role of EGFR pathway alterations in biliary cancer patients treated with chemotherapy and anti-EGFR, PLoS One, vol.13, issue.1, p.191593, 2018.

A. F. Hezel, V. Deshpande, and A. X. Zhu, Genetics of biliary tract cancers and emerging targeted therapies, J Clin Oncol, vol.28, issue.21, pp.3531-3540, 2010.

J. Vaquero, C. Lobe, and S. Tahraoui, The IGF2/IR/IGF1R Pathway in Tumor Cells and Myofibroblasts Mediates Resistance to EGFR Inhibition in Cholangiocarcinoma, Clin Cancer Res, vol.24, issue.17, pp.4282-4296, 2018.

L. Goyal, L. Y. Liu, and J. K. Lennerz, Abstract LB-092: TAS120, a covalently-binding FGFR inhibitor (FGFRi), overcomes resistance to BGJ398 in patients with FGFR2 fusion positive cholangiocarcinoma, Cancer Research, vol.78, 2013.

J. Marin, O. Briz, and E. Herraez, Molecular bases of the poor response of liver cancer to chemotherapy, Clin Res Hepatol Gastroenterol, vol.42, issue.3, pp.182-192, 2018.

R. Hummel, D. J. Hussey, and J. Haier, MicroRNAs: predictors and modifiers of chemo-and radiotherapy in different tumour types, Eur J Cancer, vol.46, issue.2, pp.298-311, 2010.

O. Briz, M. A. Serrano, and N. Rebollo, Carriers involved in targeting the cytostatic bile acidcisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diamminebisursodeoxycholate-platinum(II) toward liver cells, Mol Pharmacol, vol.61, issue.4, pp.853-860, 2002.

E. Lozano, M. J. Monte, and O. Briz, Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT), J Control Release, vol.216, pp.93-102, 2015.

M. F. Dominguez, R. I. Macias, and I. Izco-basurko, Low in vivo toxicity of a novel cisplatinursodeoxycholic derivative (Bamet-UD2) with enhanced cytostatic activity versus liver tumors, J Pharmacol Exp Ther, vol.297, issue.3, pp.1106-1112, 2001.

A. Lie, C. T. Bakker, and T. Deurholt, Selection of tumour specific promoters for adenoviral gene therapy of cholangiocarcinoma, J Hepatol, vol.44, issue.1, pp.126-133, 2006.

P. Nagi, S. M. Vickers, and J. Davydova, Development of a therapeutic adenoviral vector for cholangiocarcinoma combining tumor-restricted gene expression and infectivity enhancement, J Gastrointest Surg, vol.7, issue.3, pp.364-371, 2003.

K. M. Pluchino, M. D. Hall, A. S. Goldsborough, R. Callaghan, and M. M. Gottesman, Collateral sensitivity as a strategy against cancer multidrug resistance, Drug Resist Updat, vol.15, issue.1-2, pp.98-105, 2012.

S. Wu and L. Fu, Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells, Mol Cancer, vol.17, issue.1, p.25, 2018.