J. U. Marquardt, J. B. Andersen, and S. S. Thorgeirsson, Functional and genetic deconstruction of the cellular origin in liver cancer, Nature reviews, vol.15, pp.653-67, 2015.

T. Roskams, Liver stem cells and their implication in hepatocellular and cholangiocarcinoma, Oncogene, vol.25, pp.3818-3840, 2006.

A. Holczbauer, V. M. Factor, J. B. Andersen, J. U. Marquardt, D. E. Kleiner et al., Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types, Gastroenterology, vol.145, pp.221-252, 2013.

H. Dubois-pot-schneider, K. Fekir, C. Coulouarn, D. Glaise, C. Aninat et al., Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells, Hepatology, vol.60, pp.2077-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01134747

B. D. Tarlow, C. Pelz, W. E. Naugler, L. Wakefield, E. M. Wilson et al., Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes, Cell stem cell, vol.15, pp.605-623, 2014.

F. Cabillic and A. Corlu, Regulation of Transdifferentiation and Retrodifferentiation by Inflammatory Cytokines in Hepatocellular Carcinoma, Gastroenterology, vol.151, pp.607-622, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398435

A. Hadnagy, L. Gaboury, R. Beaulieu, and D. Balicki, SP analysis may be used to identify cancer stem cell populations, Experimental cell research, vol.312, pp.3701-3711, 2006.

N. Oishi, T. Yamashita, and S. Kaneko, Molecular biology of liver cancer stem cells, Liver cancer, vol.3, pp.71-84, 2014.

U. E. Martinez-outschoorn, M. Peiris-pages, R. G. Pestell, F. Sotgia, and M. P. Lisanti, Cancer metabolism: a therapeutic perspective, Nat Rev Clin Oncol, vol.14, pp.11-31, 2017.

P. Sancho, D. Barneda, and C. Heeschen, Hallmarks of cancer stem cell metabolism, Br J Cancer, vol.114, pp.1305-1317, 2016.

D. Glaise, G. P. Ilyin, P. Loyer, S. Cariou, M. Bilodeau et al., Cell cycle gene regulation in reversibly differentiated new human hepatoma cell lines, Cell Growth Differ, vol.9, pp.165-76, 1998.

V. Cerec, D. Glaise, D. Garnier, S. Morosan, B. Turlin et al., Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor, Hepatology, vol.45, pp.957-67, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690471

C. Coulouarn, A. Corlu, D. Glaise, I. Guenon, S. S. Thorgeirsson et al., Hepatocytestellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma, Cancer research, vol.72, pp.2533-2575, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00864206

S. Mebarki, R. Desert, L. Sulpice, M. Sicard, M. Desille et al., De novo HAPLN1 expression hallmarks Wnt-induced stem cell and fibrogenic networks leading to aggressive human hepatocellular carcinomas, Oncotarget, vol.7, pp.1502-1520, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01335675

J. Friemel, M. Rechsteiner, L. Frick, F. Bohm, K. Struckmann et al., Intratumor heterogeneity in hepatocellular carcinoma, Clin Cancer Res, vol.21, pp.1951-61, 2015.

P. Zhu, M. J. Tan, R. L. Huang, C. K. Tan, H. C. Chong et al., Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors, Cancer cell, vol.19, pp.401-416, 2011.

Y. Nong, D. Wu, Y. Lin, Y. Zhang, L. Bai et al., Tenascin-C expression is associated with poor prognosis in hepatocellular carcinoma (HCC) patients and the inflammatory mesenchymal transformation by Rho GTPase-dependent activation of ERK1/2, The Journal of biological chemistry, vol.281, pp.24575-87, 2006.

W. Dijk, A. P. Beigneux, M. Larsson, A. Bensadoun, S. G. Young et al.,

, Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes, J Lipid Res, vol.57, pp.1670-83, 2016.

W. Dijk and S. Kersten, Regulation of lipid metabolism by angiopoietin-like proteins, Curr Opin Lipidol, vol.27, pp.249-56, 2016.

E. B. Tahara, F. D. Navarete, and A. J. Kowaltowski, Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation, Free radical biology & medicine, vol.46, pp.1283-97, 2009.

S. Bonnet, S. L. Archer, J. Allalunis-turner, A. Haromy, C. Beaulieu et al., A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth, Cancer cell, vol.11, pp.37-51, 2007.

D. R. Green and G. Kroemer, The pathophysiology of mitochondrial cell death, Science, vol.305, pp.626-635, 2004.

A. Prigione, M. V. Ruiz-perez, R. Bukowiecki, and J. Adjaye, Metabolic restructuring and cell fate conversion, Cell Mol Life Sci, 2015.

S. Varum, A. S. Rodrigues, M. B. Moura, O. Momcilovic, E. Cat et al., Energy metabolism in human pluripotent stem cells and their differentiated counterparts, PloS one, vol.6, p.20914, 2011.

W. Feng, A. Gentles, R. V. Nair, M. Huang, Y. Lin et al., Targeting unique metabolic properties of breast tumor initiating cells, Stem cells, vol.32, pp.1734-1779, 2014.

K. Song, H. Kwon, C. Han, J. Zhang, S. Dash et al., Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122, Oncotarget, vol.6, pp.40822-40857, 2015.

C. L. Chen, U. Kumar, D. B. Punj, V. Xu, J. Sher et al., NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism, Cell metabolism, vol.23, pp.206-225, 2016.

K. Kim, R. Jha, P. A. Prins, H. Wang, M. Chacha et al., Regorafenib in advanced hepatocellular carcinoma (HCC): considerations for treatment, Cancer Chemother Pharmacol, vol.80, pp.945-54, 2017.

J. M. Llovet, T. Decaens, J. L. Raoul, E. Boucher, M. Kudo et al., Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study, J Clin Oncol, vol.31, pp.3509-3525, 2013.

A. L. Cheng, Y. K. Kang, D. Y. Lin, J. W. Park, M. Kudo et al., Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial, J Clin Oncol, vol.31, pp.4067-75, 2013.

J. Bruix, S. Qin, M. P. Granito, A. Huang, Y. H. Bodoky et al., Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial, Lancet, vol.389, pp.56-66, 2017.

, Representative photographs of the invasion potential of ShNTC and ShANPTL4 Spheres. (E) Levels of lactate, pyruvate and ATP in ShNTC and ShANGPTL4 Spheres. ATP content is expressed as relative to ShNTC (n=3) and is arbitrary set to 1. (F) Quantification of MitoTracker ® and COX2 staining using Cell Health Profiling, Spheres arbitrary set to 1, n=3). (D) 24h and 48h in vitro invasion potential of ShNTC and ShANGPTL4 Spheres. (n=3)

, Phase-contrast photographs, western blot of ERK and P-ERK, numbers of Spheres after seeding of 100,000 cells and LDH release for viability assessment of HepaRG-Spheres (n=3). Bar=50µm. (B) mRNA levels of OCT4, Effect of MEK1/2 inhibitor (U0126, 10µM). (A)

, HepaRG-Spheres treated with U0126 (untreated HepaRG-Spheres arbitrary set to 1, n=3). (C) 24h and 48h in vitro invasion potential of Spheres treated with U0126. (n=3), Representative photographs of the invasion potential of HepaRG-Spheres obtained after treatment with U0126. (D) Levels of pyruvate, lactate and ATP in Spheres treated with or without U0126

, ATP content is expressed as relative to untreated Spheres and is arbitrary set to 1

, Phase-contrast photographs, western blot of AKT, P-AKT and ?-actin, numbers of HepaRG-Spheres after seeding of 100,000 cells and LDH release for viability assessment of HepaRG-Spheres (n=3). Bar=50µm. (F) mRNA levels of OCT4, NANOG, IL-6, Effect of PI3K inhibitor (LY294002, 10µM). (E)