B. Y. Liu, X. P. Nie, W. Q. Liu, P. Snoeijs, C. Guan et al., Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum, Ecotoxicol. Environ. Sa, vol.74, pp.1027-1035, 2011.

, Global Action Plan on Antimicrobial Resistance) of the sixty-eighth World Health Assembly, pp.68-75, 2015.

G. Rigos, I. Nengas, M. Alexis, and G. M. Troisi, Potential drug (oxytetracycline and oxolinic acid) pollution from Mediterranean sparid fish farms, Aquatic Toxicol, vol.69, pp.281-288, 2004.

L. Hong-tih, C. Yew-hu, and L. Juo-shan, Long-term transformation of oxolinic acid in water from an eel pond, Aquaculture, vol.275, pp.96-101, 2008.

D. W. Kolpin, E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg et al., Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, Environ. Sci. Technol, vol.36, issue.6, pp.1202-1211, 1999.

X. Van-doorslaer, J. Dewulf, H. Van-langenhove, and K. Demeestere, Fluoroquinolone antibiotics: An emerging class of environmental micropollutants, Sci. Total Environ, pp.250-269, 2014.

D. Fatta-kassinos, S. Meric, and A. Nikolaou, A. Pharmaceutical, residues in environmental waters and wastewater: Current state of knowledge and future research, Anal. Bioanal. Chem, vol.399, issue.1, pp.251-275, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01507503

M. D. Hernando, M. Mezcua, A. R. Ferna?ndez-alba, and D. Barcelo?, Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments, Talanta, vol.69, issue.2, pp.334-342, 2006.

I. Michael, L. Rizzo, C. S. Mcardell, C. M. Manaia, C. Merlin et al., Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Res, vol.47, pp.957-995, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01507503

A. Novo and C. M. Manaia, Factors influencing antibiotic resistance burden in municipal wastewater treatment plants, Appl. Microbiol. Biot, vol.87, pp.1157-1166, 2010.

D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis, N. P. Xekoukoulotakis, D. Venieri et al., Mantzavinos, Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis, J. Environ. Manage, vol.98, pp.168-174, 2012.

P. S. Dunlop, M. Ciavola, L. Rizzo, D. A. Mcdowell, and J. A. Byrne, Effect of photocatalysis on the transfer of antibiotic resistance genesin urban wastewater, Catal. Today, vol.240, pp.55-60, 2015.

W. Ben, Z. Qiang, P. E. Asce, X. Pan, and Y. Nie, Degradation of Veterinary Antibiotics by Ozone in Swine Wastewater Pretreated with Sequencing Batch Reactor, J. Environ. Eng, vol.138, issue.3, pp.272-277, 2012.

Y. Chen, A. Wang, Y. Zhang, R. Bao, X. Tian et al., Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe 3+ -CIP chelate and its effect on catalytic behavior of Fe 2+ /Fe 3+ and CIP mineralization, Electrochim. Acta, vol.256, pp.185-195, 2017.

O. S. Keen and K. G. Linden, Degradation of Antibiotic Activity during UV/H2O2 Advanced Oxidation and Photolysis in Wastewater Effluent, Environ. Sci. Technol, vol.47, pp.13020-13030, 2013.

M. Kamagate, A. A. Assadi, T. Kone, L. Coulibaly, and K. Hanna, Activation of persulfate by irradiated laterite for removal of fluoroquinolones in multi-component systems, J. Hazard. Mater, vol.346, pp.159-166, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695559

H. Zeghioud, N. Khellaf, H. Djelal, A. Amrane, and M. Bouhelassa, Photocatalytic Reactors Dedicated to the Degradation of Hazardous Organic Pollutants: Kinetics, Mechanistic Aspects and Design-A Review, Chem. Eng. Commun, vol.203, pp.1415-1431, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381140

W. Lou, A. Kane, D. Wolbert, S. Rtimi, and A. A. Assadi, Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: Scavenger study and process intensification feasibility, Chemical Engineering and Processing, vol.122, pp.213-221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671634

C. Rodrigues-silva, M. G. Maniero, S. Rath, and J. R. Guimarães, Degradation of flumequine by photocatalysis and evaluation of antimicrobial activity, Chem. Eng. J, vol.224, pp.46-52, 2013.

S. Gharib-abou-ghaida, A. A. Assadi, G. Costa, A. Bouzaza, and D. Wolbert, Association of surface dielectric barrier discharge and photocatalysis in continuous reactor at pilot scale: Butyraldehyde oxidation, by-products identification and ozone valorization, Chemical Engineering Journal, vol.292, pp.276-283, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274114

O. Min, L. Ho, S. Ong, and Y. Wong, Comparison between the photocatalytic degradation of single and binary azo dyes in TiO2 suspensions under solar light irradiation, J. Water Reuse Desal, vol.5, issue.4, pp.579-591, 2015.

A. M. Peiro, J. A. Ayllon, J. Peral, and X. Domenech, TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds, Appl. Catal. B: Environ, vol.30, pp.359-373, 2001.

A. T. Nguyen and R. Juang, Treatment of o-Cresol/4-chlorophenol binary mixtures in aqueous solutions by TiO2 photocatalysis under UV irradiation, Desalin. Water Treat, vol.57, pp.6820-6828, 2016.

Y. Belaissa, D. Nibou, A. A. Assadi, B. Bellal, and M. Trari, A new hetero-junction p-CuO/nZnO for the removal of amoxicillin by photocatalysis under solar irradiation, Journal of the Taiwan Institute of Chemical Engineers, vol.68, pp.254-265, 2016.

V. Etacheri, C. D. Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments, J. Photochem. Photobiol. C: Photochem. Rev, vol.25, pp.1-29, 2015.

I. A. Shkrob, M. C. Jr, and . Sauer, Hole scavenging and photo-stimulated recombination of electron-hole pairs in aqueous TiO2 nanoparticles, J. Phys. Chem. B, vol.108, pp.12497-12511, 2004.

R. P. Cavalcante, R. F. Dantas, B. Bayarri, O. González, J. Giménez et al., Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: Primary active species and intermediates, Appl. Catal. B: Environ, vol.194, pp.111-122, 2016.

D. Chebli, F. Fourcade, S. Brosillon, S. Nacef, and A. Amrane, Integration of photocatalysis and biological treatment for azo dye removal -application to AR183, Environmental Technology, vol.32, issue.5, pp.507-514, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00917108

J. L. Packer, J. J. Werner, D. E. Latch, K. Mcneill, and W. A. Arnold, Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen, Aquat. Sci, vol.65, pp.342-351, 2003.

A. Boreen, W. A. Arnold, and K. Mcneill, Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups, Environ. Sci. Technol, vol.38, pp.3933-3940, 2004.

H. Santoke, W. Song, W. J. Cooper, J. Greaves, and G. E. Miller, Free-radicals-Induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: Kinetic studies and degradation mechanism, J. Phys. Chem. A, vol.113, pp.7846-7851, 2009.

M. E. Hidalgo, C. Pessoa, E. Fernández, and A. M. Cárdenas, Comparative determination of Quinolones, J. Photochem. PhotobioL A: Chem, vol.73, pp.135-138, 1993.

F. Vargas and C. Rivas, Mechanistic Studies On Phototoxicity Induced By Antibacterial Quinolones, Toxic Subst. Mech, vol.16, issue.1, pp.81-86, 1997.

C. Sirtori, A. Zapata, S. Malato, W. Gernjak, A. R. Fernández-alba et al., Solar photocatalytic treatment of quinolones: intermediates and toxicity evaluation, Photochem. Photobiol. Sci, vol.8, pp.644-651, 2009.

M. T. Herrington and B. R. Midmor, Adsorption of Ions at the Cellulose/Aqueous Electrolyte Interface Part 1. Charge/pH Isotherms, J. Chem. Soc., Faraday Trans. I, vol.80, pp.1525-1537, 1984.

R. Rodriguez, M. A. Blesa, and A. E. Regazzoni, Surface complexation at the TiO2 (anatase) /aqueous solution interface: chemisorption of catechol, J. Colloid and Interface Science, vol.177, pp.122-131, 1996.

A. ?. Vaizo?ullar, TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution, Chem. Eng. Commun, vol.204, issue.6, pp.689-697, 2017.

A. L. Giraldo, G. A. Peñuela, R. A. Torres-palma, N. J. Pino, R. A. Palominos et al., Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension, Water Res, vol.4, issue.4, pp.5158-5167, 2010.

R. A. Palominos, A. Mora, M. A. Mondaca, M. Pérez-moya, and H. D. Mansilla, Oxolinic acid photo-oxidation using immobilized TiO2, J. Hazard. Mater, vol.158, pp.460-464, 2008.

H. Fang, Y. Gao, G. Li, J. An, P. Wong et al., Advanced Oxidation Kinetics and Mechanism of Preservative Propylparaben Degradation in Aqueous Suspension of TiO2 and Risk Assessment of Its Degradation Products, Environ. Sci. Technol, vol.47, pp.2704-2712, 2013.

Y. Nakabayashi and Y. Nosaka, ? OH radical formation at distinct faces of rutile TiO2 crystal in the procedure of photo electrochemical water oxidation, J. Phys. Chem. C, vol.117, pp.23832-23839, 2013.

W. Song, W. Chen, W. J. Cooper, J. Greaves, and G. E. Miller, Free-radical destruction of -Lactam antibiotics in aqueous solution, J. Phys. Chem. A, vol.112, pp.7411-7417, 2008.

N. Lu, Y. Lu, F. Liu, K. Zhao, X. Yuan et al., H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A (BPA): Kinetics, toxicity and degradation pathways, vol.91, pp.1266-1272, 2013.

S. Rong and Y. Sun, Degradation of TAIC by water falling film dielectric barrier dischargeInfluence of radical scavengers, J. Hazard. Mater, vol.287, pp.317-324, 2015.

R. H. Schuler, P. Neta, and R. W. Fessenden, Electron spin resonance study of the rate constants for reaction of hydrogen atoms with organic compounds in aqueous solution, J. Phys. Chem, vol.75, pp.1654-1666, 1971.

Y. X. Chen, S. Y. Yang, K. Wang, and L. Lou, Role of primary active species and TiO2 surface characteristic in UV illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol. A: Chem, vol.172, pp.47-54, 2005.

C. Richard, F. Bosquet, and J. Pilichowski, Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions effect of substrate concentration on the distribution of products, J. Photochem. Photobiol. A: Chem, vol.108, pp.45-49, 1997.

L. Ismaila, A. Rifai, C. Ferronato, L. Fine, F. Jaber et al., Towards a better understanding of the reactive species involved in the photocatalytic degradation of sulfaclozine, Appl. Catal. B: Environ, vol.185, pp.88-99, 2016.

S. Rtimi, J. Nesic, C. Pulgarin, R. Sanjines, M. Bensimon et al., Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation, Interface Focus, vol.5, pp.1-12, 2015.

M. J. Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto et al., Photoactive TiO2 films on cellulose fibres: synthesis and characterization, J. Photochem. Photobiol. A: Chem, vol.189, pp.286-294, 2007.
DOI : 10.1016/j.jphotochem.2007.02.015

B. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima et al., Photogeneration of Highly Amphiphilic TiO2 Surfaces, Adv. Mater, vol.10, issue.2, pp.134-138, 1998.
DOI : 10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.3.co;2-d

S. H. Othman, S. A. Rashid, T. Idaty, M. Ghazi, and N. Abdullah, Dispersion and Stabilization of Photocatalytic TiO2 Nanoparticles in Aqueous Suspension for Coatings Applications, J. Nanomater, pp.1-10, 2012.

T. K. Ghorai and P. Dhak, New synthetic approach, mesoporous properties and photocatalytic activity of titania adapted chromium-niobate nanocatalysts, Adv. Mat. Lett, vol.4, issue.2, pp.121-130, 2013.

T. V. Edelio, C. B. Gustavo, and C. T. Galo, Synthesis and Characterization of New Arylamine Chitosan derivatives, J. Appl. Polymer. Sci, vol.91, pp.807-812, 2003.

B. D. Mistry, ;. Uv, P. Ir, and M. Spectroscopy, A Handbook of Spectroscopic Data Chemistry, vol.39, p.p, 2009.