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Highlights 

- H2S removal using cellular concrete waste was investigated 

 

- Cellular concrete is efficient for removing H2S in abiotic conditions 

 

- H2S reacts with CaCO3 in wet conditions to form gypsum 

 

- At EBRT = 56 s, a maximum elimination capacity of 7.8 g m-3 h-1 was calculated 

 

Abstract 

The removal of hydrogen sulfide (H2S) in air using cellular concrete waste as packing 

material was investigated and compared to results obtained with expanded schist. Air 

filtration was performed under abiotic conditions. Experiments were carried out in 3 

laboratory-scale PVC columns (internal diameter of 100 mm) filled with a volume of 7.8 L of 

material (1 m height). Filter “BF1” was filled with a mixture of cellular concrete waste and 

expanded schist (65%/35% volume, respectively). Filters “BF2” and “BF3” were filled with 

100% expanded schist and 100% cellular concrete waste, respectively. The difference in 

composition between cellular concrete and expanded schist allowed the identification of 

major components involved in H2S removal. It was demonstrated that wet conditions are 

required to obtained H2S removal. For a H2S concentration of 50 ppm, removal efficiency 

around 40-45% was obtained at an EBRT of 56 s (whereas 28% and 4% were measured for 

filters filled with the mixture of packing materials and expanded schist, respectively). It was 
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identified that the ability of cellular concrete waste to remove H2S was mainly due to 

reactions occurring between H2S and calcium carbonate leading to gypsum formation. A 

maximum elimination capacity of 7.8 g m-3 h-1 was calculated. Considering that pressure 

drops were low for this material (around 12 Pa m-1), H2S filtration using cellular concrete 

waste could be carried out beneficially as the humidification step of biofiltration systems. 
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1 Introduction 

Hydrogen sulfide (H2S) is a toxic, flammable and hazardous pollutant. Its rotten eggs smell is 

noticeable at very low concentrations, between 0.02 and 0.1 ppm depending on the individual. 

At higher concentrations, between 10 and 500 ppm, it may cause disorders in respiratory, 

nervous, cardiovascular and hematological systems, and immediate death above 500 ppm [1]. 

Sources of H2S can be anthropogenic since it is discharged by many industries using chemical 

reaction with sulfur such as paper manufacturing, wastewater treatment and petroleum. It also 

occurs naturally in carbon and volcanic gases. Nowadays, gaseous H2S in air or biogas can be 

treated in several ways such as absorption or adsorption processes, and biological processes. 

The interest for biotechniques is increasing because of their high removal efficiency and low 

running cost [1]. Incidentally, recent study has highlighted that cellular concrete waste, which 

can be used as packing material for biofiltration [2–4], could also be an effective medium for 

the treatment of H2S in air without any microbial population [5] (i.e in abiotic conditions). For 

an H2S concentration of 100 ppmv, a removal efficiency around 70% was reported. Therefore, 

such a waste material could appear as a cheap and eco friendly solution for H2S treatment in 
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air or biogas at industrial scale. Cellular concrete is a building material mainly made up of 

calcium oxide (CaO), iron oxide (Fe2O3), alumina (Al2O3), silicon dioxide (SiO2) and sulfur 

trioxide (SO3). However, interactions between cellular concrete components and H2S are not 

yet fully understood, nor are the operating conditions to reach the optimum recovery. The aim 

of this study is therefore to determine the physical reactions that occur between H2S and the 

main components of cellular concrete. For this purpose, the removal of H2S in air was 

experimentally study in three abiotic filters filled with: (i) waste of cellular concrete, (ii) 

expanded schist, and (iii) a mixture of expanded schist and cellular concrete waste. Thereby, 

the difference in composition between cellular concrete and expanded schist could allow the 

identification of major components involved in H2S removal. 

 

2 Characterization and composition of materials 

The cellular concrete waste used in this study is a mineral material provided by the 

Florentaise company based in Nantes, France, and sold as “copolight” 

(https://www.florentaise.com/fr), whereas expanded schist is an inorganic material provided 

by the Granulex company based in Mayenne, France (https://www.granulex.fr/). Properties of 

both materials are reported in Table 1. Analytical materials used to determine these properties 

are described by Ben Jaber et al. [5]. Table 2 shows that both materials exhibit close chemical 

compositions determined by using an Energy Dispersive X-ray Fluorescence Spectrometer 

(EDX-800HS, Shimadzu Company). As a result, comparing performances of filters filled with 

cellular concrete waste and expanded schist, respectively, could ultimately highlight which 

compounds are mainly involved in H2S removal in abiotic conditions. 

 

 

 

ACCEPTED M
ANUSCRIP

T

https://www.florentaise.com/fr
https://www.granulex.fr/


Table 1: Physico-chemical properties of material used in the study 

Properties Cellular concrete Expanded schist 

Density (kg m-3) 547 ± 5 1248 ± 12 

Specific area BET (m2 g-1) 44 ± 0.8 - 

Porosity (%) 64 47 

pH of surface 9.0 ± 0.1 7.0 ± 0.1 

Water retention capacity (%) 56 ± 2 - 

 

Table 2: Composition of cellular concrete and expanded schist (weight) 

Elemental composition Components 

Element 
Cellular 

concrete (%) 

Expanded 

schist (%) 
Oxide 

Cellular 

concrete (%) 

Expanded 

schist (%) 

Si 25 40 SiO2 50.5 56.4 

Fe 5 25 Fe2O3 1.3 12.4 

Al (nd) 15 Al2O3 2.2 20.5 

Ca 51 2 CaO 24.6 0.9 

K 0.6 10 K2O 0.2 5 

S 7 2 SO3 19.7 1.6 

Ti (nd) 2 TiO2 (nd) (nd) 

P 12 3 P2O5 1.4 12.4 

nd: not determined 

 

3 Possible mechanisms involved in H2S removal 

Literature data are used to investigate possible mechanisms that occur between H2S and the 

components of materials. Findings are displayed in Figure 1. Sorption mechanisms and 

chemical reactions between H2S and the cellular concrete components can be considered. 

Cellular concrete may be used as adsorbent for heavy metals or halogens [6–8]. However, due 

to its specific surface area (44 m2 g-1), adsorption tests carried out at laboratory scale indicated 

that cellular concrete waste used in this study is not a good adsorbent for H2S removal [5]. 

Chemical reactions between H2S and the cellular concrete components are consequently more 

probable. Nonetheless, there are no data suggesting a single-step reaction between H2S and 

cellular concrete. Considering the composition of cellular concrete waste (Table 2), the 
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thermodynamically favorable reactions for H2S removal involve iron oxides, calcium oxides, 

and potassium oxides (Table 3). However, it has to be noted that the role of potassium oxides 

in H2S removal in gases is not specifically described in the literature. 

 

Table 3: Possible reactions between H2S and cellular concrete components (rG° is the 

Gibbs free energy of reaction): 

SiO2 + 2H2S → SiS2 + 2H2O rG° = + 262.7 kJ mol-1 

CaO + H2S → CaS + H2O rG° = - 61.8 kJ mol-1 

Al2O3 + 3H2S → Al2S3 + 3H2O rG° = + 284 kJ mol-1 

K2O + H2S → K2S + H2O rG° = - 237.1 kJ mol-1 

FeO + H2S → FeS + H2O rG° = - 67.4 kJ mol-1 

 

It is known that iron oxides are currently used to remove H2S in sour gas at industrial scale. In 

such a case, gas is contacted with a liquid containing soluble ferric ions Fe3+. H2S is then 

oxidized to elemental sulfur and Fe3+ is reduced to ferrous ions Fe2+ according to the reaction: 

H2S + 2Fe3+ + 2OH- → S0 + 2Fe2+ + 2H2O (1) 

The liquid can be regenerated. Thus, Fe2+ can subsequently be reconverted to Fe3+ by 

oxidation with air (e.g. the Shell Iron Redox process SulFerox®) or via a biological means 

using Thiobacillus ferrooxidans [9]. 

Additionally, cheap materials containing iron oxides, like laterite [10], waste pyrolysis chars 

[11], sewage-sludge [12], red mud [13], municipal solid waste incineration bottom ash [14] or 

steel slags [15], have been recently identified as potentially interesting media for H2S 

removal. Moreover, synthetic biofiltration media containing iron was also developed to speed 

up the biological oxidation of H2S [16]. Reactions between H2S and iron oxide then lead to 

the formation of FeS and FeS2: 

Fe2O3 + 3H2S → 2FeS + S + 3H2O (2) 

FeS + H2S → FeS2 + H2 (3) 
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H2S can also react with calcium oxide (CaO; oxide sulfidation) and calcium carbonate 

(CaCO3; carbonate sulfidation) leading to the formation of calcium sulfide (CaS) and calcium 

sulfate, i.e. gypsum (CaSO4 2H2O): 

CaO + H2S → CaS + H2O (4) 

CaCO3 + H2S → CaS + H2O + CO2 (5) 

CaS + 2CO2 + 2H2O → CaSO4 2H2O + 2C (6) 

The gypsum formed can then react with aluminates to form ettringite 

(Ca6Al2(SO4)3(OH)12·26H2O) known to be an expansive material causing the disintegration of 

concrete [17]. Note that Ca-based sorbents (Ca(OH)2 and CaCO3) are applied to remove H2S 

from fuel gases at high temperatures [18] but it seems that there are only few available data at 

ambient temperature. For instance, the reactivity of (CaCO3)-based solid wastes for the 

removal of H2S from simulated biogas matrix was investigated using triphasic gas/liquid/solid 

process at room temperature and atmospheric pressure [19]. In the absence of oxygen in the 

biogas, this study suggested that dissolved H2S is neutralized by CO3
2- released by dissolution 

of CaCO3. However, as CaCO3 is only slightly soluble in water, H2S removal would not be 

efficient in this case. Calcium oxide and calcium carbonate have been also used for the 

development of synthetic media enabling the removal of H2S by biofiltration. A cylindrical-

shaped extrudate, called UP20, containing mainly calcium carbonate, an organic binder, and 

nutrients, has thus been specifically developed for the treatment of H2S. Several studies have 

highlighted that UP20 can offer a real advantage for H2S treatment, either alone, or in 

association with others packing materials [20–23]. However, the ability of UP20 to improve 

H2S removal has been attributed rather to a slow-release of nutrients and to a buffering effect 

than to possible reactions between H2S and CaCO3. Another composite packing material, 

called CM-5, mainly consisting of compost (17%w) with functional microorganisms, calcium 
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carbonate (13%w), perlite (18%w), cement (18%w), plant fiber (7%w), and inorganic bender 

(27%w) was developed for H2S biofiltration [24,25]. A comparison between two identical 

biofilters filled with original CM-5 (i.e. medium embedded with microorganisms) and 

sterilized CM-5 (i.e. medium without microorganisms) was carried out. Based on the 

maximum elimination capacity (ECmax) determined from the Michaelis-Menten model, it was 

highlighted that performance of the biofilter filled with sterilized CM-5 was eight times lower 

than that of the biofilter filled with original CM-5 (8 and 62 g m-3 h-1, respectively). 

Consequently, the ability of CM-5 to remove H2S is mainly due to the presence of functional 

microorganisms rather than to possible reactions with the material. Nonetheless, it has to be 

noted that performance of the sterilized CM-5 is not insignificant. This could be due to 

reactions between H2S and several components of compost, calcium carbonate, perlite, 

cement, plant fiber, or due to synergic interactions between all of them. However, no 

information about the role of calcium carbonate was reported in these studies. 

The comparison between experimental results obtained for the 3 abiotic filters could then be 

used to identify which components, either iron oxides or calcium oxides, are mainly involved 

in H2S removal. 
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Figure 1: Possible interactions between H2S and cellular concrete components. 

 

4 Materials and methods 

4.1 Experimental set up 

The experimental set up is shown in Figure 2. It consisted of 3 PVC cylindrical columns 

(internal diameter 100 mm) filled with a volume of 7.8 L of material (1 m height). Filter 

“BF1” was filled with a mixture of cellular concrete waste and expanded schist (54%/46% 

weight, corresponding respectively to 65%/35% in volume). Filters “BF2” and “BF3” were 

filled with 100% expanded schist and 100% cellular concrete waste, respectively (Table 4). 

Materials were sieved and fractions exceeding 10 mm and less than 5 mm were removed. 

Thermocouples (K type) were installed on each column to measure temperatures. For each 
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column, the air flow was generated using a regulated fan. If necessary, it bubbled through a 

humidification system (internal diameter of 200 mm and 30 cm height) filled with tap water. 

A stream of H2S (99.7% purity), controlled by a mass flow meter (5850S, Brooks 

Instruments, Hatfield, USA) was diluted in the air after the humidification system and before 

entering the column. The H2S concentration was measured by an Onyx 5220 analyser 

(Cosma, France, measurement accuracy ± 1%) all along the column, which was equipped 

with 9 sampling ports located at 0, 5, 20, 40, 50, 60, 80, 90, 95 and 100 cm from the bottom. 

These sampling ports could also be used to measure the pressure drops (using a pressure 

sensor Setra, Setra Systems, Inc, Boxborough, USA; 0-700 Pa).  

 

 

Figure 2: Flowsheet of the filters used for H2S removal. 
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Table 4: Composition of filters 

Filter Material (weight) Main Components (weight) 

BF1 

54% Cellular concrete 

46% Expanded schist 

 

SiO2 (53%) 

CaO (14%) 

SO3 (11%) 

Al2O3 (10%) 

Fe2O3 (6%) 

P2O5 (6%) 

BF2 100% Expanded schist 

SiO2 (56%) 

Al2O3 (20%) 

Fe2O3 (12%) 

P2O5 (12%) 

BF3 100% Cellular concrete 

SiO2 (50%) 

CaO (25%) 

SO3 (20%) 

Al2O3 (2%) 

Fe2O3 (1%) 

 

4.2 Operating conditions 

In order to identify the possible reactions occurring between the cellular concrete 

components and H2S, the polluted gas was firstly flowed through the packing filters in dry 

conditions, i.e without the humidification system, at a constant airflow (0.5 m3 h-1 

corresponding to an EBRT of 56 s) and inlet H2S concentration (50 ppmv). Experiments were 

carried out over five days from 8:00 AM to 18:00 PM each day. H2S filtration was afterwards 

investigated in wet conditions for various operating conditions over 4 months (Table 5). For 

these conditions, the three packing materials were initially sprayed one time. The moisture of 

the bed materials were then only maintained by the humidity of the gas flow entering the 

columns. Experiments in wet conditions were usually carried out from 8:00 AM to 18:00 PM 

each day (experiments were not carried out after 18:00 PM during the week nor during the 

weekend for security reasons). Nonetheless, some experiments were carried out continuously 

for 80 h in order to determine the variation in measurements and to check the “steady state” 
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condition. Parameters used to describe the operating conditions and to determine the removal 

performances are defined in Table 6. 

 

Table 5: Operating conditions 

Conditions 
Air flowrate 

(m3 h-1) 

Inlet H2S 

concentration (ppm) 
LR (g m-3 h-1) EBRT (s) 

Dry 0.5 50 4.5 56 

Wet 

0.5 

100 9.0 56 

200 17.9 56 

300 26.9 56 

400 35.9 56 

500 44.9 56 

1.0 

50 

9.0 28 

1.5 13.5 19 

2.0 18.0 14 

3.0 26.9 9 

4.0 35.9 7 

 

 

Table 6: Parameters used in this paper 

Parameter Definition Nomenclature 

Loading Rate LR (g m-3 h-1) 
Q

 V  
CG

in CG
in: Inlet concentration (g m-3) 

Elimination Capacity EC (g m-3 h-1) 
Q

V
 (CG

in − CG
out) CG

out: Outlet concentration (g m-3) 

Empty Bed Residence Time EBRT (s) 
V

Q
 Q: Gas flow rate (m3 s-1) 

Removal Efficiency RE (%) 100 
CG

in−CG
out

CG
in  V: Packing bed volume (m3) 

 

5 Results and discussion 

5.1 H2S treatment in dry conditions vs wet conditions 

In dry conditions, H2S removal efficiency was relatively low. At EBRT = 56 s, RE = 18% 

was obtained for filters using cellular concrete waste whereas no removal was recorded for 

expanded schist (Figure 3). In wet conditions, H2S removal efficiency was significantly 
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achieved for cellular concrete waste whereas a slight H2S removal was measured for 

expanded schist (Figure 4). For each filter, results given in this figure correspond to 17 

measurements carried out regularly between 2 and 79 h after the beginning of the experiment, 

which explains why results are relatively dispersed. On average, H2S removal efficiency was 

47% and 4% for filters BF3 and BF2, respectively, whereas 28% was obtained for the filter 

BF1 (mixture). Results obtained for cellular concrete waste alone were nonetheless lower than 

those reported in Ben Jaber et al. [5], i.e. RE = 70% for an H2S concentration of 100 ppm at 

EBRT = 63 s. In terms of sulphur proportion (in % weight), analysis using X-ray 

Fluorescence spectrometer reveals that H2S reacted with the components of the materials 

(Table 7). Results obtained are in agreement with removal efficiencies. For cellular concrete 

waste used alone (BF3), sulphur proportion increased from 6.8% at the beginning to reach 

20.9% at the end of the experiment in wet conditions. It has to be noted that the pH of each 

material measured after H2S exposition was unchanged in regards to initial value. Overall, it 

was calculated that 130 mg of H2S was captured per g of cellular concrete waste during the 4 

months of experiment. For expanded schist used alone (BF2), the increase was less 

noticeable, in agreement with the low RE recorded, but demonstrated nonetheless that 

expanded schist reacted with H2S. Regarding both materials used as a mixture in filter BF1, 

the increase in H2S proportion in the cellular concrete waste is similar to that recorded for 

filter BF3, albeit in a lesser extent (19.7% and 20.9%, respectively). Conversely, the H2S 

proportion in the expanded schist in BF1 was double that in BF2 (14.2% vs 7.1%) showing 

probable interactions between both materials used in the mixture. Differences between these 

results will be discussed hereafter. 
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Figure 3: H2S relative concentration along the three filters in dry conditions (blue 

diamond: cellular concrete waste; green triangle: mixture of cellular concrete waste and 

expanded schist; red square: expanded schist). CG
in = 50 ppm; EBRT = 56 s. 
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Figure 4: H2S relative concentration along the three filters in wet conditions (CG
in = 50 

ppm; EBRT = 56 s). 

 

Table 7: Change in sulphur proportion (% weight) in packing materials during filtration 

experiment. 

Filter Material 
Before 

exposure 

After exposure 

dry conditions 

After exposure 

wet conditions 

BF3 Cellular concrete 6.8 9.9 20.9 

BF1 
Cellular concrete 

Expanded schist 

6.8 

2.3 

7.6 

4.5 

19.7 

14.2 

BF2 Expanded schist 2.3 1.8 7.1 

 

All these findings suggest that one or several compounds, mainly present in cellular 

concrete and present at a negligible concentration in expanded schist, are reacting with H2S. 

According to Table 4, CaO and SO3, might be involved. SO3 can be excluded since it is not 

identified as a possible reactant with H2S (Figure 1). Moreover, it can be assumed that 

components like Fe2O3 and Al2O3, largely present in expanded schist and marginally present 

in cellular concrete (Table 1), are therefore only slightly involved in H2S removal. 

Considering that materials containing iron oxides are usually identified as potential interesting 

media for H2S removal, this last finding may seem surprising at first. Besides, as better 

removal efficiencies were recorded in wet conditions, results can be explained by the 

appearance of CaCO3, formed according to reactions that occur naturally in concrete surface 

in wet conditions. 

CaO + H2O → Ca(OH)2 (7) 

Ca(OH)2 + CO2 → CaCO3 + H2O (8) 

As a result, cellular concrete waste used in this study should not act as an iron sponge with 

iron regeneration. Chemical reactions between H2S and calcium oxides leading to the 

formation of gypsum according to equations 4-6 are mostly probable. The formation of the 
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components Ca(OH)2 and CaCO3, although slightly soluble in water, could explain the double 

proportion of sulphur measured in the expanded schist in the BF1filter in regard to BF2. It 

could be assumed that during the formation of calcium compounds, a part of these compounds 

moved by lixiviation from the cellular concrete waste to the expanded schist. In regards to 

literature data, reactions that occur between CaCO3 and H2S could also explain the ability of 

synthetic media developed specifically for biofiltration, and containing CaCO3 such as UP20 

[21,26] and CM-5 [24,25], to improve biofilter performances. Moreover, in the case of UP20, 

these physical reactions could explain the ability of biofilters to withstand sudden high load 

H2S changes [23]. As previously indicated, the use of Ca-based sorbents in the removal of 

H2S from fuel gases was extensively studied at high temperatures, i.e. 650-1300°C [18], but 

the use of carbonaceous materials for gas desulfurization at ambient temperature is only now 

starting to be studied [11]. To date, and from the current state of our knowledge, reported 

results have been obtained in the presence of water. For instance, crushed oyster shells, 

mainly composed of CaCO3, were used to remove H2S in water [27]. Mechanisms of 

adsorption followed by an oxidation to obtain S°, SO3
2- and S2O3

- were suggested. Therefore, 

based on the study of Asaoka and co-workers [27], an attempt to remove H2S using a filter 

filled with crushed oyster shells was carried out. Filter BF2 was used for this purpose (Figure 

2), expanded schist being replaced by crushed oyster shells (particle size distribution: 3-6 

mm). For the operating conditions EBRT = 56 s and CG
in = 50 ppm, removal efficiencies were 

7.5% and 21.5% in dry and wet conditions, respectively, which is lower than results obtained 

for cellular concrete waste (Figure 5). However, it has to be noted that the oyster shell used in 

this study is a smooth material. Consequently, from these findings, it can be argued that: (i) 

the porosity of the material is a parameter that also has to be considered; (ii) the ability of the 

cellular concrete to react with H2S in wet conditions is mainly due to the presence of calcium 
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oxides, but reaction could be catalyzed by the presence of other trace metal elements not 

present in the oyster shell. Both arguments can obviously be conjugated. 

 

5.2 Impact of experimental conditions 

The influence of inlet H2S concentration was studied in wet conditions at a constant 

EBRT of 56 s. Results are reported in Figure 5. For both filters filled with cellular concrete 

waste, the removal efficiency logically decreased with the increase in CG
in, the shapes of the 

curves being quite similar. The drop in RE were significant for inlet concentrations up to 200 

ppm and moderate for higher concentrations. For a filter filled with cellular concrete only, RE 

was around 40-45% for an H2S inlet concentration of 50 ppm. This result confirms the 

potential advantage of using cellular concrete waste as a first stage in treatment of gaseous 

H2S effluents. For expanded schist, RE ranged from 1.5% to 5.8% irrespective of the H2S 

inlet concentration. 

The influence of EBRT change in the removal efficiency is clearly highlighted in Figure 6 

for filters filled with cellular concrete waste. For BF1 and BF3, RE increased significantly 

with EBRT. As the change in EBRT was obtained by varying the gas flow-rate, the maximum 

EBRT value was 56 s, corresponding to a minimum flow-rate of 0.5 m3 h-1. In this case, RE 

was around 40-45% for the filter filled with cellular concrete waste. Considering that 

measured pressure drops were low for this material (around 12 Pa m-1), it will be interesting to 

investigate the impact of higher EBRT obtained by increasing the height of the packing 

material. Furthermore, it could be argued that H2S filtration through a long horizontally 

packed filter (several meters leading to high EBRT values) could be very efficient. For BF1 

(mixture), it can be considered that H2S removal is mainly due the presence of cellular 

concrete waste. Since the contact time between the gas phase and this material in BF1 is 

approximately half that in BF3 (due to the presence of expanded schist in BF1), it can be 
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considered that the performances of both filters were similar (on the basis of the amounts of 

cellular concrete waste in filters) as it will be shown hereafter from the determination of 

parameter lump using the Ottengraf model. 

 

 

 

Figure 5: Removal efficiency vs H2S concentration at the inlet of filters in wet conditions 

at EBRT = 56 s (blue diamond: cellular concrete waste; green triangle: mixture of cellular 

concrete waste and expanded schist; red square: expanded schist). 
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Figure 6: Removal efficiency vs EBRT in wet conditions at Cg
in = 50 ppm (blue diamond: 

cellular concrete waste; green triangle: mixture of cellular concrete waste and expanded 

schist; red square: expanded schist). 
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Experimental results were fitted to determine the parameters lump, ECmax and Ks. The choice 
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reactions involving a single substrate but may also be formally applied to other physical 

reactions. In the present case, the form of the equation of the Michaelis-Menten model is: 
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EC = ECmax
Cln

Ks+ Cln  
   (9) 

With: 

Cln =
CG

in− CG
out

ln(
CG

in

CG
out)  

   (10) 

It has to be noted that equations (9-10) have been successfully applied to describe the 

performances of different packing materials used in H2S biofiltration [3,20,21,28,29]. 

Secondly, it has to be remembered that the Ottengraf model, developed by Ottengraf and Van 

den Oever [30] to describe the mechanisms of transfer and biodegradation in a biofilter, is 

based on the Michaelis-Menten equation. Thus, one of the main assumptions of this model is 

that the reaction rate constant of the substrate elimination in the biofilm is of zero-order in the 

pollutant concentration, which assumes a very low value of the Michaelis-Menten constant 

Ks. However, the same assumption of a zero-order reaction rate could be made in the absence 

of biofilm provided that a chemical reaction occurs between H2S and the components of the 

material. Usually, zero-order kinetics are encountered at high concentrations of H2S, which is 

generally the case in laboratory experiments. Two situations were then considered by the 

Ottengraf model: zero-order kinetics with diffusional limitation and zero-order kinetics with 

biological limitation in the biofilm. Considering that H2S reaction limitation or H2S diffusion 

limitation can also occur in the present case due to a physical reaction between H2S and the 

components of the material in place of a biological degradation in a biofilm, it therefore 

appeared interesting to apply this model to determine the parameter lump. This parameter is 

interesting because it was demonstrated that it is a suitable tool to determine the performance 

of a biofilter as a whole whatever its composition (mixture or layers of different packing 

materials) and whatever the EBRT [3]. Thus, assuming that the reaction rate is diffusion 

limited, the relation between the loading rate and the removal capacity of the filter is given by 

the relation (the way to obtain this relation is extensively described in [3]): 
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EC = LR [1 − (1 − αlump√
EBRT

LR
)

2

]    (11) 

From Equation (11), the parameter lump is obtained by drawing the curve (1-EC/LR)1/2 versus 

(EBRT/LR)1/2. A linear curve with an intercept of 1, and a slope corresponding to -lump has 

to be obtained. Using the definitions of LR and EC given in Table 6 (i.e. g m-3 h-1) and EBRT 

in h, the unit of lump is then in g1/2 m-3/2 h-1/2. 

Experimental data and modeled curves provided by the Michaelis-Menten and Ottengraf 

models are displayed in Figures 7 and 8, respectively. From Figure 7, it is shown that data 

obtained for filters containing cellular concrete waste (i.e. BF1 and BF3) can be satisfactorily 

described by the model of Michaelis-Menten (Microsoft® Excel solver was used to determine 

ECmax and Ks values). For BF2, data cannot be modeled (calculated ECmax being an unrealistic 

value) which is not surprising since RE was close to zero whatever the operating conditions. 

As indicated in Table 8, ECmax value determined for cellular concrete waste was in the same 

order of magnitude as the value obtained for sterilized CM-5, a synthetic material specifically 

developed for H2S treatment, and significantly lower than the value obtained using laboratory-

scale biofilters. Nonetheless, this result reinforces the idea that cellular concrete waste could 

be used as a first stage in H2S treatment. 
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Figure 7: Elimination capacity vs H2S concentration. Experimental points (blue diamond: 

cellular concrete waste; green triangle: mixture of cellular concrete waste and expanded 

schist; red square: expanded schist) and the Michaelis-Menten model (continuous lines). 

 

Figure 8 shows that the experimental data for cellular concrete waste can also be modelled 

using the Ottengraf model. Consequently, it can be considered that H2S reaction with cellular 

concrete is of zero-order kinetic with diffusional limitation. As the parameter lump allows to 

characterize the performance of a filter as a whole whatever its composition (mixture of 

different packing materials for instance), it seems reasonable that lump value for BF1 was 

lower than for BF3 (2.70 vs 4.26 g1/2 m-3/2 h-1, respectively). The ratio between lump values 

corresponds well to the ratio of the amounts of cellular concrete waste filling each filter (65% 

and 100% in volume, respectively). The comparison between lump values determined for 

biofilters (Table 9) and cellular concrete waste in abiotic conditions are in agreement with the 

findings deduced from the analysis of ECmax values. Even if the lump value determined for 

cellular concrete waste is lower than the values reported in the literature in the case of a 
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biofilter filled with inoculated materials, the potential advantages of using this waste material 

for H2S treatment is nonetheless proved. 

 

Figure 8: lump determination from the Ottengraf model (blue diamond: cellular concrete 

waste; green triangle: mixture of cellular concrete waste and expanded schist; red square: 

expanded schist). 

 

Table 8: Parameters ECmax et Ks reported in the literature. 

 
EBRT 

(s) 

KS 

(g m-3) 

ECmax 

(g m-3 h-1) 
Reference 

Cellular concrete waste (abiotic) 56 0.21 7.8 Present study 

Expanded schist + microorganisms 63 0.070 28.6 [4] 

Expanded schist + microorganisms 35 0.050 32.8 [23] 

Peat + microorganisms 

Sapwood + microorganisms 

Pine bark + microorganisms 

57 

0.113 

0.017 

0.036 

53.4 

8.3 

16.5 

[22] 

Sterilized CM-5 (abiotic) 

CM-5 + microorganisms 
48 

0.030 

0.080 

8.4 

62.2 
[25] 
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Table 9: αlump values of different packing materials used in biofiltration [3,22]. 

Packing materials filling the biofilter αlump (g1/2 m-3/2 h-1) 

Sapwood 7.9 

Sapwood + UP20 (2 layers) 8.4 

Pine bark 11.4 

Pozzolan + UP20 (2 layers) 11.9 

Peat 15.3 

Peat + UP20 (2 layers) 15.9 

Peat + UP20 (mixed) 21.3 

Expanded schist + UP20 (2 layers) 26.4 

 

6 Conclusion 

The ability of an abiotic filter filled with cellular concrete waste as packing material to treat 

H2S in air was investigated. It was demonstrated that wet conditions are required to obtained 

H2S removal. Removal efficiency around 40-45% was obtained at an EBRT of 56 s and for a 

H2S concentration of 50 ppm. This result was mainly due to reactions occurring between H2S 

and calcium carbonate leading to gypsum formation. A maximum elimination capacity of 7.8 

g m-3 h-1 was calculated using the Michaelis-Menten model. Therefore, H2S filtration using 

cellular concrete waste could be carried out beneficially as the humidification step of 

biofiltration systems. Additionally, this mode of filtration could be used as a first step 

treatment to remove H2S from biogas. Considering that pressure drops were low for this 

material (around 12 Pa m-1), it can be assumed that a H2S filtration through a long packed 

filter would be very efficient (a horizontal mode would be more appropriate than a very high 

column). However, the fact that the gypsum formed can potentially react with aluminates to 

form ettringite causing the disintegration of concrete has to be investigated in order to 

determine the lifetime of the material for such applications. 
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