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ABSTRACT 

 

Inter-ring haptotropic rearrangements (IRHRs) of different types are well-known 

phenomena in organometallic and catalytic chemistry. So far, they are reported for transition 

metal complexes with carbo- and heterocyclic polyaromatic hydrocarbons (PAH) of small and 

medium size. Here, we report DFT studies of RuCp+ shifts between neighboring six-membered 

rings (η6  η6-IRHR) on an extra-large PAH as a model for graphene and compare it to 

naphthalene. Our calculations predict that η6  η6-IRHRs proceed with much lower activation 

energy barrier of rearrangement in the case of the RuCp+ complex of η6-graphene model. 
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INTRODUCTION 

 

Transition metal complexes play a decisive role in the transformation of simple organic 

substances and generation of important innovative derivatives such as technological precursors, 

materials for science and industry, catalysts, new polymers and medicines [1]. In the case of 

complexes of polyaromatic hydrocarbons (PAHs), these properties are generally associated with 

their structural peculiarities and propensity for inter-ring rearrangements (IRHRs) both via 

dissociative inter- and intra-molecular mechanism [2]. They consist in the shifting of an MLn 

organometallic group (OMG) along the PAH plane from one ring to another. Such ηn  ηn-

IRHR (n = 2, Ni, Rh; n = 4, Ir; n = 6, Cr, Ru) were observed for a number of transition metals, 

and in particular investigated for chromium tricarbonyl complexes [3]. Some examples involving 

naphthalene complexes are shown in Scheme 1.  

 

 

Scheme 1. Examples of inter-ring rearrangements (IRHRs) for naphthalene complexes. 

 

So far only a very restricted number of η6  η6-IRHRs in RuCp+ complexes of PAH, 

which are quite important as catalysts [4] and as antitumor agents [5], were reliably observed 

(Scheme 2). Thus, such rearrangements were reported in complexes of acecorannulene [6] and 

rubrene [7]. The activation barriers were estimated as ∆G# ~ 25-30 kcal/mol. Dynamic behavior 

of transition metal complexes is quite important, in particular in the course of transformations 

under after action of ruthenium complexes, due to the fact that during IRHR via transition states 

and intermediates, the hapticity of the metal decreases. As a consequence, it can catch in its 

coordination sphere additional substrate and reagent for the act of catalysis [8]. Low activation 

barrier facilitates shifting of the metal at reasonable temperatures and catalytic reaction in much 

milder conditions. Large PAH such as graphene and nanotubes have anticancer activity 

themselves [9] and proved activity of RuCp+ complexes [10] can leads to increasing activity in 

synergetic mode after coordination with ruthenium.  
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Scheme 2. Examples of inter-ring rearrangements (IRHRs) for RuCp+ complexes of 

polyaromatic hydrocarbons (PAHs). 

 

Though these two reactions are difficult to compare, owing to the considerable 

differences of the PAH structures, both with rigid stereochemistry of the ligands (bowl-type 

geometry of acecorannulene and propeller-like conformation of periphery phenyls in rubrene). 

Additionally Cp* is a more donor ligand than Cp, and this also differentiates both complexes. 

But overall, this is the nature of the ion pairs which is the main factor facilitating IRHR. In non-

polar solvents such as CH2Cl2, contact ion pairs (CIPs) are formed between Ru+ and the counter-

ion (e.g. PF6
-). Such ion pairing facilitates the IRHR process, in contrast to what happens in polar 

solvents where separated ion pairs (SIPs) are formed [11]. Indeed, η6  η6-IRHR is 

sufficiently rapid (hours) in CH2Cl2 solvent, and extremely slow (weeks) in the much more polar 

acetone solvent. This means that IRHR activation barriers in ruthenium cationic complexes 

depend on cation−anion and cation−solvent interactions [12]. This agrees well with the fact that 

for more than two decades it has been well-known that reaction rates of the majority of processes 

in organometallic CpRu+ salts depend on the solvent and the structure of ion pairs [13]. Later, we 

have shown by DFT calculations that, in the case of non-polar solvents, interaction of negative 

counter ion (e.g. PF6
-) with (η6-naphthalene)RuCp+ via the metal in CIP can considerably reduce 

activation barriers thus making η6  η6-IRHR possible at reasonable temperature. The 

problem of experimental kinetic measurement of such barriers by means of e.g. spectroscopic 

methods consists in the poor weak complex concentration, due to low solubility of such salts in 

non-polar solvents [11].  

Except for the two processes illustrated in Scheme 2, a quite exotic electron-driven 

haptotropic reaction was observed recently [14] in a complex containing both Ru and Fe metal 
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centers (Scheme 3). The reaction was initiated by oxidation of Fe0 into Fe+ in the initial complex. 

Thus, this redox electronic factor owing to partial positive charge in the substituent decrease 

electron density in substituted ring and considerably reduces the activation barrier and thus 

allows the A2+  B2+ IRHR.  

 

 
Scheme 3. Electron-driven haptotropic reaction. 

 

Another possibility to reduce considerably the activation barrier for an (η6-arene)RuCp+ 

species was demonstrated in the case of naphthalene complexes substituted with highly donor Si-

groups (Scheme 4) [15]. The mechanism involves contact of the coordinating solvent molecule 

with Ru+, which facilitates the C  D rearrangements. This was observed experimentally and 

supported theoretically by DFT (∆G#~ 30 kcal/mol) for a number of RuCp+ complexes [16]. It is 

noteworthy that the η6  η6-IRHR proceeds from the donor-substituted ring to the 

unsubstituted naphthalene ring which has considerably less electron density, supporting thus the 

idea that the bonding of coordinating MeCN solvent molecules with Ru+ is the driving force of 

the IRHR. Full or partial electron charge delocalization (e.g. from counter-anion) on the ligand 

also plays a considerable role in reducing the IRHR activation barrier, as it was founded by 

McGlinchey et al. [17-19]. It is however quite difficult to separate this contribution from DFT 

calculations in the case of polycyclic aromatic ligand, the structure of which consists of 

uncharged six-membered rings.  

 

 

Scheme 4. Rearrangement for silicon substituted Ru complex. 
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Finally, it should be noted that IRHR processes can be also accelerated with the use of 

UV/vis irradiation, as demonstrated by Perekalin et al. [16] in the case of substituted 

naphthalene complexes (Scheme 5) for which the rearrangement is much faster than when 

thermally induced even at low temperature after deprotonating of the corresponding acid in 

water.  

 

 

Scheme 5. Rearrangement for Ru complex under UV/vis irradiation. 

 

For the sake of comparison we have calculated the activation barrier for such UV-induced 

process in the case of the unsubstituted (η6-naphthalene)RuCp+ assuming SIP state. The IRHR 

reaction takes place in the exited low-lying triplet state and requires a fairly low activation 

barrier (∆G#
 = 13.4 kcal/mol). These calculations were in part published in a diploma work [20], 

they are provided here in more details in the SI. These results prove the applicability of DFT for 

the calculation of activation barrier of IRHR. 

In contrast, recent experimental investigations of η6 η6-IRHRs in synthesized 

Cp*Ru+ complexes of a number of common PAH showed the absence of any rearrangement, in 

polar solvents [21]. This was supported by DFT calculations which led to very high activation 

barriers (∆G# = 36-41 kcal/mol), precluding observation of such rearrangements at reasonable 

temperatures. These results are in accordance with our systematic DFT investigation of 

η6 η6-IRHR in (η6-naphthalene)MCp+ (M= Fe, Ru, Os) complexes as solvent SIP [20], 

which also show very high activation barrier ∆G# = 40-47 kcal/mol (see Figure S3 and Table S1, 

Supplementary).  

The analysis of the above data strongly suggests that the only possibility to observe 

thermally driven IRHR at reliable temperatures in small and middle size PAH (except for 

introducing strong electron donating/withdrawing substituent) is to include as a catalyst some 

efficient coordinating agent which in the course of reaction can bind to Ru+. Alternatively, one 

could proceeds the reaction in a very dilute solution (which strongly complicates spectroscopic 

observation) in non-polar solvents to preserve CIP formation with the counter ion coordinated to 

Ru+. Experiments to find such universal conditions for η6  η6-IRHRs in CpRu+ complexes 

are now in progress. The results could be of high importance in catalysis and material science. 
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But to our mind another possibility also exists to facilitate η6  η6-IRHRs in RuCp+ 

complexes, not considered in the literature before. It consists in increasing the size of the PAH 

because in that case the metal-PAH bonding is weaker, allowing an easier metal migration along 

the PAH surface. This was already proven for tricarbonyls of group 6 metals (M= Cr, Mo, W) 

with large coronene and kekulene [22], as well as graphene [23] and nanotubes [24]. This trend 

was supported by Sato et al. [25] with the result of some decrease of activation barrier for (η6-

coronene)RuCp+ (∆G# = 31-33 kcal/mol) in comparison with the data on IRHR for small PAH 

(∆G# = 36-41 kcal/mol) [21]. In this paper, we further increase the size of the PAH model by two 

additional layers around the central coronene molecule, thus modeling already non-synthesized 

RuCp+ complexes of graphene with the (C96H24)RuCp+ complex I  and we show by DFT 

calculations that the computed IRHR energy barriers are much lower than with complexes of 

smaller PAHs.  

 

 

RESULTS AND DISCUSSION 

  

There are six types of symmetry-equivalent rings in the considered C96H24 PAH for 

coordination with CpRu+. We discuss herein the only models where the metal is coordinated to 

the two most inner rings (I-A and I-B ; see Figure 1), because it was shown previously that 

activation barriers depend poorly on localization of the metal on the sheet of the model graphene 

ligand [23]. They are also more representative of coordination to extended graphene systems. 

Their small energy difference (~2 kcal/mol, see Fig. 1) indicates that our chosen model graphene 

is pertinent. In the course of η6 η6-IRHR in I-A , where the metal is situated at the very 

center of the model “graphene” molecule, the RuCp+ unit shifts via transition state I-TS1, 

intermediate I-IM and second transition state I-TS2 to the neighboring ring with the formation 

of the complex I-B , where CpRu+ has practically same configuration as in I-A : I-A  I-TS1 

 I-IM  I-TS2  I-B . The intermediate and the two transition states have very 

similar structures and are very close in energy (Figure 1). Noteworthy, the activation barrier is 

considerably reduced (∆G# = 25.5 kcal/mol) relative to small and middle size PAH (∆G# ~ 36 – 

41 kcal/mol).  

Such a lowering of the activation barrier for the sliding of RuCp+ along the PAH is 

consistent with a considerable Ru-C bond length increase in I-A  (or I-B ), in comparison with 

that in the η6-naphthalene ruthenium complex II (Figs. 1, 2 and Table 1). In model I , RuCp+ will 

continue to shift to the periphery due to thermodynamic preferences along the surface of the 
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ligand. However, considering that a graphene flake has only a restricted perimeter in comparison 

with the huge amount of inner six-membered rings in pristine graphene means that movement of 

RuCp+ will occur mainly in the middle of graphene and thus process I-A  I-B  is most 

characteristic for RuCp+ complexes IRHR in graphene.  

 

Fig. 1. Structures and energies (in kcal mol-1) of the stationary points along the η6 η6-IRHR 

pathway in η6-grapheneRuCp+ (I ), numeration in Cp fragment omitted for the sake of simplicity 

and is the same as in Fig. 2 for II-A . 

 

 
Fig. 2. Structures and energies (in kcal/mol) of the stationary points along the η6 η6-IRHR 

pathway in (η6-naphthalene)RuCp+ (II ). Owing to the pathway symmetry, only its first half is 

considered.  
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Table 1. Selected bond lengths in II [20] and I  (in Å). 

Bond X-ray 
II-A  

DFT 
II-A 

 

DFT 
I-A  

Ru-C1 2.218 2.216 2.303 
Ru-C2 2.221 2.224 2.303 
Ru-C3 2.218 2.225 2.303 
Ru-C4 2.200 2.218 2.302 
Ru-C4a 2.284 2.310 2.302 
Ru-C8a 2.262 2.309 2.303 
Ru-C9 2.179 2.214 2.178 
Ru-C10 2.190 2.207 2.178 
Ru-C11 2.182 2.184 2.178 
Ru-C12 2.172 2.182 2.178 
Ru-C13 2.180 2.203 2.178 
C4a-C8a 1.441 1.453 1.437 
C2-C3 1.422 1.424 1.437 
C6-C7 1.428 1.425 1.427 

Average deviation 
for X-ray and 
DFT for II-A  

- 0.015  

 

In order to get a deeper insight into in the bonding variation within the stationary points 

of I , a Morokuma-Ziegler energy decomposition analysis (EDA) was carried out, considering the 

interaction between the PAH and RuCp+ fragments (see Computational Details). For the sake of 

comparison, a similar analysis was performed for II . The results are given in Table 2, where the 

total bonding energy between fragments is expressed as the sum of three components, the Pauli 

repulsion (EPauli), the electrostatic interaction energy (EElstat), and the orbital interaction energy 

(Eorb). Unsurprisingly, the Pauli repulsion decreases with metal connectivity. It is overbalanced 

by the stabilizing EElstat and Eorb components, of which Eorb is prevailing, indicating covalency 

predominance. The total bonding energy is lower in II-A  as compared with I-A  (or I-B ), 

confirming stronger bonding with smaller PAH. Consistently, a population analysis of the 

fragment frontier orbitals in I-A and II-A  indicates that the electron transfers corresponding to 

PAH→metal donation and metal→PAH backdonation are larger in II-A than in I-A (0.61 vs. 

0.51 and 1.08 vs. 0.98, respectively). On the other hand, the opposite energetic situation occurs 

for the reaction intermediates, i.e., the bonding is stronger in the graphene system I-IM . This is 

in line with the much larger electron delocalization in the larger PAH. This can be also related to 

the different natures of the IRHR processes in I (inner) and II (outer), as illustrated in Figures 1 

and 2. As a result, in I-IM  Ru is η4-coordinated, somewhat like in a trimethylenemethane 

complex, but with three long bonds (2.50-2.52 Å) and a short one (2.12 Å), whereas II-IM  is in a 
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peripheral η3 coordination mode (see Figures 1 and 2 and Table 1). The population analysis of 

the fragment frontier orbitals indicates a substantially larger PAH→metal electron transfer in I-

IM (0.98) than in II-IM  (0.62). Although much less pronounced, the difference in the 

metal→PAH backdonation follows the same trend (0.37 in I-IM vs. 0.30 in II-IM ). As a 

consequence of a more stable A equilibrium geometry and a less stable intermediate IM (or the 

very close transition states) in the case of I  as compared to II , their energy difference is smaller 

in the graphene complex I than in its naphthalene relative II  and so is the activation energy in the 

η6 η6-IRHR process. 

 

Table 2. Morokuma-Ziegler energy decomposition analysis (EDA) of I  and II  (all values in eV). 

EPauli= Pauli repulsion; Eelstat = electrostatic interaction; EOrb = orbital interaction. TBE = (total 

bonding energy) = EPauli + Eelstat + Eorb 

 

 I-A I-TS1 I-IM I-TS2 I-B II-A II-IM 

EPauli 7.16 5.14 5.55 4.98 7.33 8.42 5.02 

EElstat -4.39 -3.45 -3.69 -3.34 -4.49 -5.26 -3.42 

EOrb -6.63 -4.22 -4.41 -4.13 -6.79 -7.31 -3.85 

TBE -3.86 -2.53 -2.55 -2.49 -3.95 -4.15 -2.25 

 

Thus, from the obtained results we can draw a conclusion that for η6-RuCp+ complexes 

of sufficiently large PAH (graphene, nanotubes, fullerenes) thermally induced η6 η6-IRHR 

with high rate at reliable temperature (50 - 70oC) is possible. Moreover, owing to the 

significantly smaller HOMO-LUMO gap of I  as compared to II (Figures S1 and S2), one may 

anticipate that the UV-vis induced process should be even much faster in the case of large PAH. 

 

COMPUTATIONAL DETAILS 

 

The geometries of molecules, transition states, and intermediates were fully optimized by 

means of density functional theory (DFT) calculations. The PBE functional [26] and scalar-

relativistic theory were used, the latter employing the four-component spin-free Hamiltonian 

derived by Dyall [27] and applied variationally [28]. The full electron basis sets L1 were used, 

where L1 stands for double set size. The numbers of contracted and primitive functions used in 
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L1 are respectively {2,1}/{6,2} for H, {3,2,1}/{10,7,3} for C, and {7,6,4}/{26,23,16,5} for Ru 

[29]. Such functionals and basis sets were chosen as the result of a systematic investigation of 

the geometry of various metal complexes and the rates of organometallic reactions which was 

accomplished in our laboratory during the past decade as well as a result of comparative 

calculations in the course of this work. Corrections for zero-point energies were calculated in the 

harmonic approximation. Stationary points on the potential energy surface (PES) were identified 

by analyzing Hessians. The thermodynamic functions (Gibbs activation energies, G) at 298.15 K 

were calculated using an approximation of restricted rotator and harmonic oscillator. Reaction 

paths were found by the intrinsic reaction coordinate (IRC) method. All calculations were 

performed using the MBC100k cluster at the Joint Supercomputer Center (JSCC) (Moscow, 

Russia) with the use of the PRIRODA04 program written by Laikov [29, 30].  

The interactions between the PAH and RuCp+ fragments were investigated within the 

Morokuma-Ziegler energy decomposition analysis (EDA) framework. [31, 32] Whereas, 

PRIRODA04 does not provide such EDA analysis, we used the ADF program [33, 34], carrying 

out single-point calculations on the PRIRODA04-optimized structures, employing the PBE 

functional, and using the standard TZ2P basis set within the zeroth-order regular approximation 

(ZORA) [35]. It was checked that both programs provide no significant differences in terms of 

relative energies. It was also checked by test calculations with a hybrid functional (PBE0 [36]) 

that the discussed results are stable with respect to the functional nature (see Table S2). 

 

CONCLUSIONS 

 

By means of DFT η6  η6-IRHR, their mechanisms and relative energies of 

intermediates and transition states in RuCp+ complexes of naphthalene and of a model graphene 

molecule C96H24 (I ) were investigated and analyzed. Theoretical data are in good agreement with 

quantitative experimental kinetic data for other PAH complexes. The metal shift on the graphene 

ligand proceeds through two transition states and one intermediate. Increasing the PAH size 

leads to a considerable reduction of the activation barrier of the thermally induced η6  η6-

IRHR and thus facilitates migration of the RuCp+ in comparison with small and middle-sized 

PAH.  
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Highlighlts: 

- Inter-ring haptotropic rearrangements (IRHRs) for Ru complexes were studied by DFT; 

- RuCp+ complexes with naphthalene and graphene were studied as models; 

- Increasing of the size of PAH leads to reducing the activation barrier of the IRHR. 

 


