J. V. Johnson, R. A. Yost, P. E. Kelley, and D. C. Bradford, Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps, Anal. Chem, vol.62, pp.2162-2172, 1990.

A. Markarov, E. Cousijn, J. Cantebury, E. Denisov, C. Thoeing et al., Extension of Orbitrap capabilities to enable new applications, Proceedings of the 65th Conference on Mass Spectrometry and Allied Topics, 2017.

C. Vogel and E. M. Marcotte, Insights into the regulation of protein abundance from proteomic and transcriptomic analyses, Nat. Rev. Genet, vol.13, pp.227-232, 2012.

R. H. Perry, R. G. Cooks, and R. J. Noll, Orbitrap mass spectrometry: Instrumentation, ion motion and applications, Mass Spectrom. Rev, vol.27, pp.661-699, 2008.

H. Z. Senyuva, V. Gökmen, and E. A. Sarikaya, Future perspectives in Orbitrap?-high-resolution mass spectrometry in food analysis: A review, Food Addit. Contam. A, vol.32, pp.1568-1606, 2015.

R. E. Jabbour, A. P. Snyder, . Chap, R. P. Schaudies, and . Ed, 14-Mass spectrometry-based proteomics techniques for biological identification, Biological Identification, pp.370-430, 2014.

S. Eliuk and A. Makarov, Evolution of Orbitrap Mass Spectrometry Instrumentation, Ann. Rev. Anal. Chem, vol.8, pp.61-80, 2015.

E. R. Rhoades, C. Streeter, J. Turk, and F. Hsu, Characterization of Sulfolipids of Mycobacterium tuberculosis H37Rv by Multiple-Stage Linear Ion-Trap High-Resolution Mass Spectrometry with Electrospray Ionization Reveals That the Family of Sulfolipid II Predominates, Biochemistry, vol.50, pp.9135-9147, 2011.

F. Hsu, Characterization of Hydroxyphthioceranoic and Phthioceranoic Acids by Charge-Switch Derivatization and CID Tandem Mass Spectrometry, J. Am. Soc. Mass Spectrom, vol.27, pp.622-632, 2016.

F. F. Hsu, J. Turk, R. M. Owens, E. R. Rhoades, and D. G. Russell, Structural Characterization of Phosphatidyl-myo-Inositol Mannosides from Mycobacterium bovis Bacillus Calmette Guerin by Multiple-Stage Quadrupole Ion-Trap Mass Spectrometry with Electrospray Ionization. II. Monoacyl-and Diacyl-PIMs, J. Am. Soc. Mass Spectrom, vol.18, pp.479-492, 2007.

F. F. Hsu, J. Turk, R. M. Owens, E. R. Rhoades, and D. G. Russell, Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Guerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and lyso-PIMs, J. Am. Soc. Mass Spectrom, vol.18, pp.466-478, 2007.

K. N. Flentie, C. L. Stallings, J. Turk, A. J. Minnaard, and F. Hsu, Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS, J. Lipid Res, vol.57, pp.142-155, 2016.

H. C. Hoppe, B. J. De-wet, C. Cywes, M. Daffe, and M. R. Ehlers, Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells, Infect. Immun, vol.65, pp.3896-3905, 1997.

N. C. Howard, N. D. Marin, M. Ahmed, B. A. Rosa, J. Martin et al., Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes, Nat. Microbiol, vol.3, pp.1099-1108, 2018.

M. Daffé, C. Lacave, M. Lanéelle, M. Gillois, and G. Lanéelle, Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus, Eur. J. Biochem, vol.172, pp.579-584, 1988.

D. E. Minnikin, G. Dobson, D. Sesardic, and M. Ridell, Mycolipenates and Mycolipanolates of Trehalose from Mycobacterium tuberculosis, J. Gen. Microbiol, vol.131, pp.1369-1374, 1985.

M. Munoz, M. A. Laneelle, M. Luquin, J. Torrelles, E. Julian et al., Occurrence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis, FEMS Microbiol. Lett, vol.157, pp.251-259, 1997.

A. Lemassu, M. A. Laneelle, and M. Daffe, Revised structure of a trehalose-containing immunoreactive glycolipid of Mycobacterium tuberculosis, FEMS Microbiol. Lett, vol.62, pp.171-175, 1991.

M. A. Ariza, F. Martín-luengo, and P. L. Valero-guillén, A family of diacyltrehaloses isolated from Mycobacterium fortuitum, Microbiology, vol.140, 1989.

M. A. Ariza and P. L. Valero-guillen, Delineation of molecular species of a family of diacyltrehaloses from Mycobacterium fortuitum by mass spectrometry, FEMS Microbiol. Lett, vol.119, pp.279-282, 1994.

G. S. Besra, R. C. Bolton, M. R. Mcneil, M. Ridell, K. E. Simpson et al., Structural elucidation of a novel family of acyltrehaloses from Mycobacterium tuberculosis, Biochemistry, vol.31, pp.9832-9837, 1992.

N. Gautier, L. M. Marín, M. A. Lanéelle, and M. Daffé, Structure of mycoside F, a family of trehalose-containing glycolipids of Mycobacterium fortuitum, FEMS Microbiol. Lett, vol.77, pp.81-87, 1992.

K. Lee, V. S. Dubey, P. E. Kolattukudy, C. Song, A. R. Shin et al., Diacyltrehalose of Mycobacterium tuberculosis inhibits lipopolysaccharide-and mycobacteria-induced proinflammatory cytokine production in human monocytic cells, FEMS Microbiol. Lett, vol.267, pp.121-128, 2007.

R. Saavedra, E. Segura, R. Leyva, L. A. Esparza, and L. M. López-marín, Mycobacterial Di-O-Acyl-Trehalose Inhibits Mitogen-and Antigen-Induced Proliferation of Murine T Cells In Vitro, Clin. Diagn. Lab. Immun, vol.8, pp.1081-1088, 2001.

R. Bailo, A. Bhatt, and J. A. Ainsa, Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development, Biochem. Pharmacol, vol.96, pp.159-167, 2015.

F. Papa, P. Cruaud, and H. L. David, Antigenicity and specificity of selected glycolipid fractions from Mycobacterium tuberculosis, Res. Microbiol, vol.140, pp.569-578, 1989.

M. E. Hamid, J. L. Fraser, P. A. Wallace, G. Besra, M. Goodfellow et al., Antigenic glycolipids of Mycobacterium fortuitum based on trehalose acylated with 2-methyloctadec-2-enoic acid, Lett. Appl. Microbiol. Rev, vol.16, pp.132-135, 1993.

M. Ridell, G. Wallerstr6m, D. E. Minnikin, R. C. Bolton, and M. Magnusson, A comparative serological study of antigenic glycolipids from Mycobacteriurn tuberculosis, Tubercle Lung Dis, vol.73, pp.71-75, 1992.

M. T. Tórtola, M. A. Lanéelle, and N. Martín-casabona, Comparison of two 2,3-diacyl trehalose antigens from Mycobacterium tuberculosis and Mycobacterium fortuitum for serology in tuberculosis patients, Clin. Diagn. Lab. Immun, vol.3, pp.563-566, 1996.

S. Prabhakar, T. Vivès, V. Ferrières, T. Benvegnu, L. Legentil et al., A fully enzymatic esterification/transesterification sequence for the preparation of symmetrical and unsymmetrical trehalose diacyl conjugates, vol.19, pp.987-995, 2017.

C. Y. Botté, M. Deligny, A. Roccia, A. Bonneau, N. Saïdani et al., Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana, Nat. Chem. Biol, vol.7, pp.834-842, 2011.

J. V. Olsen, B. Macek, O. Lange, A. Makarov, S. Horning et al., Higher-energy C-trap dissociation for peptide modification analysis, Nat. Meth, vol.4, pp.709-712, 2007.

F. F. Hsu, Mass spectrometry-based shotgun lipidomics-A critical review from the technical point of view, Anal. Bioanal. Chem, vol.410, pp.6387-6409, 2018.

C. Frankfater, X. Jiang, and F. F. Hsu, Characterization of Long-Chain Fatty Acid as N-(4-Aminomethylphenyl) Pyridinium Derivative by MALDI LIFT-TOF/TOF Mass Spectrometry, J. Am. Soc. Mass Spectrom, vol.29, pp.1688-1699, 2018.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI