I. Mitroulis, K. Ruppova, B. Wang, L. S. Chen, M. Grzybek et al., Modulation of myelopoiesis progenitors is an integral component of trained immunity, Chavakis T, vol.172, pp.147-161, 2018.

A. Hérault, M. Binnewies, S. Leong, F. J. Calero-nieto, S. Y. Zhang et al., Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis, Nature, vol.544, pp.53-58, 2017.

D. I. Gabrilovich, Myeloid-derived suppressor cells, Cancer Immunol Res, vol.5, pp.3-8, 2017.

S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, Regulatory T cells and immune tolerance, Cell, vol.133, pp.775-787, 2008.

R. R. Flores, C. L. Clauson, J. Cho, B. C. Lee, S. J. Mcgowan et al., Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-?B-dependent mechanism, Aging Cell, vol.16, pp.480-487, 2017.

D. I. Gabrilovich, S. Ostrand-rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours, Nat Rev Immunol, vol.12, pp.253-268, 2012.

A. Luyckx, E. Schouppe, O. Rutgeerts, C. Lenaerts, S. Fevery et al., G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells, Clin Immunol, vol.143, pp.83-87, 2012.

O. Marini, S. Costa, D. Bevilacqua, F. Calzetti, N. Tamassia et al., Mature CD10+ and immature CD10? neutrophils present in G-CSF-treated donors display opposite effects on T cells, vol.129, pp.1343-1356, 2017.

Z. F. Vasconcelos, B. M. Santos, E. S. Costa, M. Lima, D. G. Tabak et al., T-lymphocyte function from peripheral blood stem-cell donors is inhibited by activated granulocytes, Cytotherapy, vol.5, pp.336-381, 2003.

V. Bronte, S. Brandau, S. H. Chen, M. P. Colombo, A. B. Frey et al., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards, Nat Commun, vol.7, p.12150, 2016.

S. Brandau, S. Trellakis, K. Bruderek, D. Schmaltz, G. Steller et al., , 2011.

, Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties, J Leukoc Biol, vol.89, pp.311-317

D. M. Hossain, S. K. Pal, D. Moreira, P. Duttagupta, Q. Zhang et al., TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients, Clin Cancer Res, vol.21, pp.3771-3782, 2015.

J. Y. Sagiv, J. Michaeli, S. Assi, I. Mishalian, H. Kisos et al., Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer, Cell Rep, vol.10, pp.562-573, 2015.

P. C. Rodriguez, M. S. Ernstoff, C. Hernandez, M. Atkins, J. Zabaleta et al., Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes, Cancer Res, vol.69, pp.1553-1560, 2009.

J. Schmielau and O. J. Finn, Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients, Cancer Res, vol.61, pp.4756-4760, 2001.

T. R. Sippel, J. White, K. Nag, V. Tsvankin, M. Klaassen et al., Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I, Clin Cancer Res, vol.17, pp.6992-7002, 2011.

A. H. Zea, P. C. Rodriguez, M. B. Atkins, C. Hernandez, S. Signoretti et al., Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion, Cancer Res, vol.65, pp.3044-3048, 2005.

E. Eruslanov, M. Neuberger, I. Daurkin, G. Q. Perrin, C. Algood et al., Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer, Int J Cancer, vol.130, pp.1109-1119, 2012.

D. I. Gabrilovich, V. Bronte, S. H. Chen, M. P. Colombo, A. Ochoa et al., The terminology issue for myeloid-derived suppressor cells, Cancer Res, vol.67, issue.1, p.425, 2007.

T. Condamine, G. A. Dominguez, J. I. Youn, A. V. Kossenkov, S. Mony et al., Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients, Sci Immunol, vol.1, 2016.

J. E. Talmadge and D. I. Gabrilovich, History of myeloid-derived suppressor cells, Nat Rev Cancer, vol.13, pp.739-752, 2013.

O. Goldmann, A. Beineke, and E. Medina, Identification of a novel subset of myeloid-derived suppressor cells during chronic Staphylococcal infection that resembles immature eosinophils, J Infect Dis, vol.216, pp.1444-1451, 2017.

Z. Bian, L. Shi, M. Venkataramani, A. M. Abdelaal, C. Culpepper et al., Tumor conditions induce bone marrow expansion of granulocytic, but not monocytic, immunosuppressive leukocytes with increased CXCR2 expression in mice, Eur J Immunol, vol.48, issue.3, pp.532-542, 2017.

T. Condamine, V. Kumar, I. R. Ramachandran, J. I. Youn, E. Celis et al., ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis, J Clin Invest, vol.124, pp.2626-2639, 2014.

P. T. Thevenot, R. A. Sierra, P. L. Raber, A. A. Al-khami, J. Trillo-tinoco et al., The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors, Immunity, vol.41, pp.389-401, 2014.

J. I. Youn, M. Collazo, I. N. Shalova, S. K. Biswas, and D. I. Gabrilovich, Characterization of the nature of granulocytic myeloidderived suppressor cells in tumor-bearing mice, J Leukoc Biol, vol.91, pp.167-181, 2012.

S. Mandruzzato, S. Brandau, C. M. Britten, V. Bronte, V. Damuzzo et al., Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study, Cancer Immunol Immunother, vol.65, pp.161-169, 2016.

K. M. Conlee, E. H. Hoffeld, and M. L. Stephens, A demographic analysis of primate research in the United States, Altern Lab Anim, vol.32, pp.315-337, 2004.

I. Messaoudi, R. Estep, B. Robinson, and S. W. Wong, Nonhuman primate models of human immunology, Antioxid Redox Signal, vol.14, pp.261-273, 2011.

W. M. Nauseef, Isolation of human neutrophils from venous blood, Methods Mol Biol, vol.1124, pp.13-18, 2014.

A. Lin, F. Liang, E. A. Thompson, M. Vono, S. Ols et al., Rhesus macaque myeloid-derived suppressor cells demonstrate T cell inhibitory functions and are transiently increased after vaccination, J Immunol, vol.200, pp.286-294, 2018.

M. Vono, A. Lin, A. Norrby-teglund, R. A. Koup, F. Liang et al., Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo, Blood, vol.129, pp.1991-2001, 2017.

B. Molon, S. Ugel, D. Pozzo, F. Soldani, C. Zilio et al., Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells, J Exp Med, vol.208, pp.1949-1962, 2011.

C. Bogdan, Nitric oxide and the immune response, Nat Immunol, vol.2, pp.907-916, 2001.

M. Pickup, S. Novitskiy, and H. L. Moses, The roles of TGF? in the tumour microenvironment, Nat Rev Cancer, vol.13, pp.788-799, 2013.

M. Z. Noman, G. Desantis, B. Janji, M. Hasmim, S. Karray et al., PD-L1 is a novel direct target of HIF-1?, and its blockade under hypoxia enhanced MDSC-mediated T cell activation, J Exp Med, vol.211, pp.781-790, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02401558

S. Spranger, R. M. Spaapen, Y. Zha, J. Williams, Y. Meng et al., Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells, Sci Transl Med, vol.5, 2013.

S. Ryzhov, S. V. Novitskiy, A. E. Goldstein, A. Biktasova, M. R. Blackburn et al., Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+ Gr1+ cells, J Immunol, vol.187, pp.6120-6129, 2011.

S. M. Hatfield, J. Kjaergaard, D. Lukashev, T. H. Schreiber, B. Belikoff et al., Immunological mechanisms of the antitumor effects of supplemental oxygenation, Sci Transl Med, vol.7, pp.277-307, 2015.

J. Zhu, P. De-tenbossche, C. G. Cané, S. Colau, D. Van-baren et al., Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes, Nat Commun, vol.8, p.1404, 2017.

M. Platten, W. Wick, . Van-den-eynde, and . Bj, Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion, Cancer Res, vol.72, pp.5435-5440, 2012.

D. H. Munn, M. D. Sharma, B. Baban, H. P. Harding, Y. Zhang et al., GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase, Immunity, vol.22, pp.633-642, 2005.

P. Y. Pan, G. Ma, K. J. Weber, J. Ozao-choy, G. Wang et al., Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer, Cancer Res, vol.70, pp.99-108, 2010.

J. Nan, Y. F. Xing, B. Hu, J. X. Tang, H. M. Dong et al., Endoplasmic reticulum stress induced LOX-1, Immunology, vol.154, pp.144-155, 2018.

Y. M. He, X. Li, M. Perego, Y. Nefedova, A. V. Kossenkov et al., Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation, Nat Med, vol.24, pp.224-231, 2018.

L. Cassetta, R. Noy, A. Swierczak, G. Sugano, H. Smith et al., Isolation of mouse and human tumor-associated macrophages, Adv Exp Med Biol, vol.899, pp.211-229, 2016.

K. R. Jordan, P. Kapoor, E. Spongberg, R. P. Tobin, D. Gao et al., Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients, Cancer Immunol Immunother, vol.66, pp.503-513, 2017.

I. Puga, M. Cols, C. M. Barra, B. He, L. Cassis et al., B cell-helper neutrophils stimulate the diversification and production of, Nat Immunol, vol.13, pp.170-180, 2012.

V. Cortez-retamozo, M. Etzrodt, A. Newton, P. J. Rauch, A. Chudnovskiy et al., Origins of tumor-associated macrophages and neutrophils, Proc Natl Acad Sci, vol.109, pp.2491-2496, 2012.

N. Kostlin, K. Hofstadter, A. L. Ostermeir, B. Spring, A. Leiber et al., Granulocytic myeloid-derived suppressor cells accumulate in human placenta and polarize toward a Th2 phenotype, J Immunol, vol.196, pp.1132-1145, 2016.

P. Wu, D. Wu, C. Ni, J. Ye, W. Chen et al., gammadel-taT17 cells promote the accumulation and expansion of myeloidderived suppressor cells in human colorectal cancer, Immunity, vol.40, pp.785-800, 2014.

J. G. Quatromoni, S. Singhal, P. Bhojnagarwala, W. W. Hancock, S. M. Albelda et al., An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells, J Leukoc Biol, vol.97, pp.201-209, 2015.

J. Galon, A. Costes, F. Sanchez-cabo, A. Kirilovsky, B. Mlecnik et al., Type, density, and location of immune cells within human colorectal tumors predict clinical outcome, Science, vol.313, pp.1960-1964, 2006.

T. Tsujikawa, S. Kumar, R. N. Borkar, V. Azimi, G. Thibault et al., Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis, Cell Rep, vol.19, pp.203-217, 2017.

J. Tang, N. Van-panhuys, W. Kastenmüller, and R. N. Germain, The future of immunoimaging-deeper, bigger, more precise, and definitively more colorful, Eur J Immunol, vol.43, pp.1407-1412, 2013.

D. S. Richardson and J. W. Lichtman, Clarifying tissue clearing Cell, vol.162, pp.246-257, 2015.

D. Schapiro, H. W. Jackson, S. Raghuraman, J. R. Fischer, V. Zanotelli et al., histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data, Nat Methods, vol.14, pp.873-876, 2017.