M. L. Mott and J. M. Berger, DNA replication initiation: Mechanisms and regulation in bacteria, Nat. Rev. Microbiol, vol.5, pp.343-354, 2007.

M. Méchali, Eukaryotic DNA replication origins: Many choices for appropriate answers, Nat. Rev. Mol. Cell Biol, vol.11, pp.728-738, 2010.

P. K. Patel, B. Arcangioli, S. P. Baker, A. Bensimon, and N. Rhind, DNA replication origins fire stochastically in fission yeast, Mol. Biol. Cell, vol.17, pp.308-316, 2006.

J. Taljanidisz, J. Popowski, and N. Sarkar, Temporal order of gene replication in Chinese hamster ovary cells, Mol. Cell. Biol, vol.9, pp.2881-2889, 1989.

R. Desprat, D. Thierry-mieg, N. Lailler, J. Lajugie, C. Schildkraut et al., Predictable dynamic program of timing of DNA replication in human cells, Genome Res, vol.19, pp.2288-2299, 2009.

C. Heichinger, C. J. Penkett, J. Bähler, and P. Nurse, Genome-wide characterization of fission yeast DNA replication origins, EMBO J, vol.25, pp.5171-5179, 2006.

T. Ryba, I. Hiratani, J. Lu, M. Itoh, M. Kulik et al., Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types, Genome Res, vol.20, pp.761-770, 2010.

E. Yaffe, S. Farkash-amar, A. Polten, Z. Yakhini, A. Tanay et al., Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture, PLoS Genet, vol.6, 2010.

B. D. Pope, T. Ryba, V. Dileep, F. Yue, W. Wu et al., Topologically associating domains are stable units of replication-timing regulation, Nature, vol.515, pp.402-405, 2014.

K. S. Malyavantham, S. Bhattacharya, W. D. Alonso, R. Acharya, and R. Berezney, Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus, Chromosoma, vol.117, pp.553-567, 2008.

R. Berezney, D. D. Dubey, and J. A. Huberman, Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci, Chromosoma, vol.108, pp.471-484, 2000.

P. Heun, T. Laroche, K. Shimada, P. Furrer, and S. M. Gasser, Chromosome dynamics in the yeast interphase nucleus, Science, vol.294, pp.2181-2186, 2001.

C. A. Muller and C. A. Nieduszynski, Conservation of replication timing reveals global and local regulation of replication origin activity, Genome Res, vol.22, pp.1953-1962, 2012.

A. Perrot, C. L. Millington, B. Gómez-escoda, D. Schausi-tiffoche, and P. J. Wu, CDK activity provides temporal and quantitative cues for organizing genome duplication, PLoS Genet, vol.14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737264

P. J. Wu and P. Nurse, Replication origin selection regulates the distribution of meiotic recombination, Mol. Cell, vol.53, pp.655-662, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010761

B. D. Pope, I. Hiratani, and D. M. Gilbert, Domain-wide regulation of DNA replication timing during mammalian development, Chromosome Res, vol.18, pp.127-136, 2010.

I. Hiratani, T. Ryba, M. Itoh, T. Yokochi, M. Schwaiger et al., Global reorganization of replication domains during embryonic stem cell differentiation, PLoS Biol, vol.6, 2008.

P. J. Stambrook and R. A. Flickinger, Changes in chromosomal DNA replication patterns in developing frog embryos, J. Exp. Zool, vol.174, pp.101-113, 1970.

M. Rodríguez-martínez, N. Pinzón, C. Ghommidh, E. Beyne, H. Seitz et al., The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans, Nat. Struct. Mol. Biol, vol.24, pp.290-299, 2017.

J. C. Siefert, C. Georgescu, J. D. Wren, A. Koren, and C. L. Sansam, DNA replication timing during development anticipates transcriptional programs and parallels enhancer activation, Genome Res, vol.27, pp.1406-1416, 2017.

D. M. Macalpine, H. K. Rodríguez, and S. P. Bell, Coordination of replication and transcription along a Drosophila chromosome, Genes Dev, vol.18, pp.3094-3105, 2004.

E. Pourkarimi, J. M. Bellush, and I. Whitehouse, Spatiotemporal coupling and decoupling of gene transcription with DNA replication origins during embryogenesis in C. elegans, vol.5, 2016.

C. A. Müller and C. A. Nieduszynski, DNA replication timing influences gene expression level, J. Cell Biol, vol.216, pp.1907-1914, 2017.

J. A. Stamatoyannopoulos, I. Adzhubei, R. E. Thurman, G. V. Kryukov, S. M. Mirkin et al., Human mutation rate associated with DNA replication timing, Nat. Genet, vol.41, pp.393-395, 2009.

G. I. Lang and A. W. Murray, Mutation rates across budding yeast chromosome VI are correlated with replication timing, Genome Biol. Evol, vol.3, pp.799-811, 2011.

A. Koren, P. Polak, J. Nemesh, J. J. Michaelson, J. Sebat et al., Differential relationship of DNA replication timing to different forms of human mutation and variation, Am. J. Hum. Genet, vol.91, pp.1033-1040, 2012.

Y. Yehuda, B. Blumenfeld, N. Mayorek, K. Makedonski, O. Vardi et al., Germline DNA replication timing shapes mammalian genome composition, Nucleic Acids Res, vol.46, pp.8299-8310, 2018.

N. Agier and G. Fischer, The mutational profile of the yeast genome is shaped by replication, Mol. Biol. Evol, vol.29, pp.905-913, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01528431

C. C. Weber, C. J. Pink, and L. D. Hurst, Late-replicating domains have higher divergence and diversity in Drosophila melanogaster, Mol. Biol. Evol, vol.29, pp.873-882, 2012.

C. Chen, A. Rappailles, L. Duquenne, M. Huvet, G. Guilbaud et al., Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes, Genome Res, vol.20, pp.447-457, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00517756

Y. H. Woo and W. Li, DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes, Nat. Commun, 1004.

L. Liu, S. De, and F. Michor, DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes, Nat. Commun, 1502.

P. Polak, R. Karli?, A. Koren, R. Thurman, R. Sandstrom et al., Cell-of-origin chromatin organization shapes the mutational landscape of cancer, Nature, vol.518, pp.360-364, 2015.

M. S. Lawrence, P. Stojanov, P. Polak, G. V. Kryukov, K. Cibulskis et al., Mutational heterogeneity in cancer and the search for new cancer-associated genes, Nature, vol.499, pp.214-218, 2013.

S. De and F. Michor, DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes, Nat. Biotechnol, vol.29, pp.1103-1108, 2011.

J. Lu, H. Li, M. Hu, T. Sasaki, A. Baccei et al., The distribution of genomic variations in human iPSCs is related to replication-timing reorganization during reprogramming, Cell Rep, vol.7, pp.70-78, 2014.

M. Shugay, I. Ortiz-de-mendíbil, J. L. Vizmanos, and F. J. Novo, Genomic hallmarks of genes involved in chromosomal translocations in hematological cancer, PLoS Comput. Biol, vol.8, 2012.

Z. Guan, C. M. Hughes, S. Kosiyatrakul, P. Norio, R. Sen et al., Decreased replication origin activity in temporal transition regions, J. Cell Biol, vol.187, pp.623-635, 2009.

Y. Watanabe, A. Fujiyama, Y. Ichiba, M. Hattori, T. Yada et al., Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: Disease-related genes in timing-switch regions, Hum. Mol. Genet, vol.11, pp.13-21, 2002.

Y. Watanabe, T. Ikemura, and H. Sugimura, Amplicons on human chromosome 11q are located in the early/late-switch regions of replication timing, Genomics, vol.84, pp.796-805, 2004.

B. V. Halldorsson, G. Palsson, O. A. Stefansson, H. Jonsson, M. T. Hardarson et al., Characterizing mutagenic effects of recombination through a sequence-level genetic map, Science, vol.363, 1043.

R. M. Mccarroll and W. L. Fangman, Time of replication of yeast centromeres and telomeres, Cell, vol.54, pp.505-513, 1988.

K. Ahmad and S. Henikoff, Centromeres are specialized replication domains in heterochromatin, J. Cell Biol, vol.153, pp.101-110, 2001.

S. Kim, D. D. Dubey, and J. A. Huberman, Early-replicating heterochromatin, Genes Dev, vol.17, pp.330-335, 2003.

A. Koren, H. Tsai, I. Tirosh, L. S. Burrack, N. Barkai et al., Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase, PLoS Genet, vol.6, 2010.

W. Feng, J. Bachant, D. Collingwood, M. K. Raghuraman, and B. J. Brewer, Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress, Genetics, vol.183, pp.1249-1260, 2009.

T. W. Glover, C. Berger, J. Coyle, and B. Echo, DNA polymerase ? inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes, Hum. Genet, vol.67, pp.136-142, 1984.

A. Admire, L. Shanks, N. Danzl, M. Wang, U. Weier et al., Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast, Genes Dev, vol.20, pp.159-173, 2006.

T. W. Glover, T. E. Wilson, and M. F. Arlt, Fragile sites in cancer: More than meets the eye, Nat. Rev. Cancer, vol.17, pp.489-501, 2017.

S. C. Di-rienzi, D. Collingwood, M. K. Raghuraman, and B. J. Brewer, Fragile genomic sites are associated with origins of replication, Genome Biol. Evol, vol.1, pp.350-363, 2009.

M. Debatisse, B. Le-tallec, A. Letessier, B. Dutrillaux, and O. Brison, Common fragile sites: Mechanisms of instability revisited, Trends Genet, vol.28, pp.22-32, 2012.

M. F. Arlt, S. G. Durkin, R. L. Ragland, and T. W. Glover, Common fragile sites as targets for chromosome rearrangements, DNA Repair, vol.5, pp.1126-1135, 2006.

M. F. Arlt, D. E. Miller, D. G. Beer, and T. W. Glover, Molecular characterization of FRAXB and comparative common fragile site instability in cancer cells, Genes Chromosomes Cancer, vol.33, pp.82-92, 2002.

A. A. Burrow, L. E. Williams, L. C. Pierce, and Y. Wang, Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites, Bmc Genom, vol.10, 2009.

L. Beau, M. M. Rassool, F. V. Neilly, M. E. Espinosa, R. Glover et al., Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: Implications for the mechanism of fragile site induction, Hum. Mol. Genet, vol.7, pp.755-761, 1998.

A. Letessier, G. A. Millot, S. Koundrioukoff, A. Lachagès, N. Vogt et al., Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site, Nature, vol.470, pp.120-123, 2011.

M. Blin, B. Le-tallec, V. Nähse, M. Schmidt, C. Brossas et al., Transcription-dependent regulation of replication dynamics modulates genome stability, Nat. Struct. Mol. Biol, vol.26, pp.58-66, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02511509

J. H. Barlow, R. B. Faryabi, E. Callén, N. Wong, A. Malhowski et al., Identification of early replicating fragile sites that contribute to genome instability, Cell, vol.152, pp.620-632, 2013.

M. Macheret and T. D. Halazonetis, Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress, Nature, vol.555, pp.112-116, 2018.

J. Hwang, S. Smith, A. Ceschia, J. Torres-rosell, L. Aragón et al., Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications, DNA Repair, vol.7, pp.1426-1436, 2008.

B. Dunn and G. Sherlock, Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus, Genome Res, vol.18, pp.1610-1623, 2008.

J. L. Gordon, K. P. Byrne, and K. H. Wolfe, Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome, PLoS Genet, vol.5, 2009.

S. A. Lujan, A. R. Clausen, A. B. Clark, H. K. Macalpine, D. M. Macalpine et al., Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition, Genome Res, vol.24, pp.1751-1764, 2014.

B. Gómez-escoda and P. J. Wu, The organization of genome duplication is a critical determinant of the landscape of genome maintenance, Genome Res, vol.28, pp.1179-1192, 2018.

W. Feng, S. C. Di-rienzi, M. K. Raghuraman, and B. J. Brewer, Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation, vol.3, pp.327-335, 2011.

S. A. Roberts, J. Sterling, C. Thompson, S. Harris, D. Mav et al., Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions, Mol. Cell, vol.46, pp.424-435, 2012.

K. Chan, J. F. Sterling, S. A. Roberts, A. S. Bhagwat, M. A. Resnick et al., Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent, PLoS Genet, vol.8, 2012.

A. Chabes, B. Georgieva, V. Domkin, X. Zhao, R. Rothstein et al., Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase, Cell, vol.112, pp.391-401, 2003.

J. Poli, O. Tsaponina, L. Crabbé, A. Keszthelyi, V. Pantesco et al., dNTP pools determine fork progression and origin usage under replication stress, EMBO J, vol.31, pp.883-894, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00677221

T. Wilhelm, S. Ragu, I. Magdalou, C. Machon, E. Dardillac et al., Slow replication fork velocity of Homologous recombination-defective cells results from Endogenous oxidative stress, PLoS Genet, vol.12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01313543

D. Kumar, J. Viberg, A. K. Nilsson, and A. Chabes, Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint, Nucleic Acids Res, vol.38, pp.3975-3983, 2010.

D. L. Watt, R. J. Buckland, S. A. Lujan, T. A. Kunkel, and A. Chabes, Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools, Nucleic Acids Res, vol.44, pp.1669-1680, 2016.

L. I. Toledo, M. Altmeyer, M. Rask, C. Lukas, D. H. Larsen et al., ATR prohibits replication catastrophe by preventing global exhaustion of RPA, Cell, vol.155, pp.1088-1103, 2013.

L. M. Hereford, M. A. Osley, T. R. Ludwig, and C. S. Mclaughlin, Cell-cycle regulation of yeast histone mRNA, Cell, vol.24, pp.367-375, 1981.

M. A. Osley, The regulation of histone synthesis in the cell cycle, Annu. Rev. Biochem, vol.60, pp.827-861, 1991.

X. Zhao, S. Mckillop-smith, and B. Müller, The human histone gene expression regulator HBP/SLBP is required for histone and DNA synthesis, cell cycle progression and cell proliferation in mitotic cells, J. Cell Sci, vol.117, pp.6043-6051, 2004.

J. Mejlvang, Y. Feng, C. Alabert, K. J. Neelsen, Z. Jasencakova et al., New histone supply regulates replication fork speed and PCNA unloading, J. Cell Biol, vol.204, pp.29-43, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00933315

F. Prado and A. Aguilera, Partial depletion of histone H4 increases homologous recombination-mediated genetic instability, Mol. Cell. Biol, vol.25, pp.1526-1536, 2005.

N. Collins, R. A. Poot, I. Kukimoto, C. García-jiménez, G. Dellaire et al., An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin, Nat. Genet, vol.32, pp.627-632, 2002.

B. Schuster-böckler and B. Lehner, Chromatin organization is a major influence on regional mutation rates in human cancer cells, Nature, vol.488, pp.504-507, 2012.

S. French, Consequences of replication fork movement through transcription units in vivo, Science, vol.258, pp.1362-1365, 1992.

A. M. Deshpande and C. S. Newlon, DNA replication fork pause sites dependent on transcription, Science, vol.272, pp.1030-1033, 1996.

F. Prado and A. Aguilera, Impairment of replication fork progression mediates RNA polII transcription-associated recombination, EMBO J, vol.24, pp.1267-1276, 2005.

S. Paul, S. Million-weaver, S. Chattopadhyay, E. Sokurenko, and H. Merrikh, Accelerated gene evolution through replication-transcription conflicts, Nature, vol.495, pp.512-515, 2013.

A. Azvolinsky, P. G. Giresi, J. D. Lieb, and V. A. Zakian, Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae, Mol. Cell, vol.34, pp.722-734, 2009.

A. Helmrich, M. Ballarino, and L. Tora, Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes, Mol. Cell, vol.44, pp.966-977, 2011.

D. G. Wansink, E. E. Manders, I. Van-der-kraan, J. A. Aten, R. Van-driel et al., RNA polymerase II transcription is concentrated outside replication domains throughout S-phase, J. Cell Sci, vol.107, issue.6, pp.1449-1456, 1994.

J. D. Wang, M. B. Berkmen, and A. D. Grossman, Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis, Proc. Natl. Acad. Sci, vol.104, pp.5608-5613, 2007.

M. Huvet, S. Nicolay, M. Touchon, B. Audit, Y. ;-d'aubenton-carafa et al., Human gene organization driven by the coordination of replication and transcription, Genome Res, vol.17, pp.1278-1285, 2007.
URL : https://hal.archives-ouvertes.fr/ensl-00198451

M. Marsolier-kergoat and A. Goldar, DNA replication induces compositional biases in yeast, Mol. Biol. Evol, vol.29, pp.893-904, 2012.

J. E. Sale, Translesion DNA synthesis and mutagenesis in eukaryotes, Cold Spring Harb. Perspect. Biol, issue.5, 2013.

E. C. Friedberg, Suffering in silence: The tolerance of DNA damage, Nat. Rev. Mol. Cell Biol, vol.6, pp.943-953, 2005.

M. Plachta, A. Halas, J. Mcintyre, and E. Sledziewska-gojska, The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae, DNA Repair, vol.29, pp.147-153, 2015.

V. B. Seplyarskiy, G. A. Bazykin, and R. A. Soldatov, Polymerase ? activity is linked to replication timing in Humans: evidence from mutational signatures, Mol. Biol. Evol, vol.32, pp.3158-3172, 2015.

F. Supek and B. Lehner, Differential DNA mismatch repair underlies mutation rate variation across the human genome, Nature, vol.521, pp.81-84, 2015.