A. Hubaud and O. Pourquie, Signalling dynamics in vertebrate segmentation, Nature reviews. Molecular cell biology, vol.15, pp.709-721, 2014.

F. Petit, K. E. Sears, A. , and N. , Limb development: a paradigm of gene regulation, Nat Rev Genet, 2017.

T. Schmid and A. Hajnal, Signal transduction during C. elegans vulval development: a NeverEnding story, Current opinion in genetics & development, vol.32, pp.1-9, 2015.

C. Collinet, M. Rauzi, P. F. Lenne, and T. Lecuit, Local and tissue-scale forces drive oriented junction growth during tissue extension, Nature cell biology, vol.17, pp.1247-1258, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01428973

B. Aigouy, R. Farhadifar, D. B. Staple, A. Sagner, J. C. Roper et al., Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila, Cell, vol.142, pp.773-786, 2010.

P. Olguin, A. Glavic, and M. Mlodzik, Intertissue mechanical stress affects Frizzledmediated planar cell polarity in the Drosophila notum epidermis, Current biology : CB, vol.21, pp.236-242, 2011.

A. Sagner, M. Merkel, B. Aigouy, J. Gaebel, M. Brankatschk et al., Establishment of global patterns of planar polarity during growth of the Drosophila wing epithelium, Current biology : CB, vol.22, pp.1296-1301, 2012.

L. C. Butler, G. B. Blanchard, A. J. Kabla, N. J. Lawrence, D. P. Welchman et al., Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension, Nature cell biology, vol.11, pp.859-864, 2009.

M. Diogon, F. Wissler, S. Quintin, Y. Nagamatsu, S. Sookhareea et al., The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis, Development, vol.134, pp.2469-2479, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00189390

A. J. Piekny, J. L. Johnson, G. D. Cham, and P. E. Mains, The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis, Development, vol.130, pp.5695-5704, 2003.

H. Zhang, F. Landmann, H. Zahreddine, D. Rodriguez, M. Koch et al., A tension-induced mechanotransduction pathway promotes epithelial morphogenesis, Nature, vol.471, pp.99-103, 2011.

T. T. Vuong-brender, X. Yang, and M. Labouesse, C. elegans Embryonic Morphogenesis, Curr Top Dev Biol, vol.116, pp.597-616, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01538534

T. T. Vuong-brender, M. Ben-amar, J. Pontabry, and M. Labouesse, The interplay of stiffness and force anisotropies drives embryo elongation, 2017.

E. A. Cox-paulson, E. Walck-shannon, A. M. Lynch, S. Yamashiro, R. Zaidel-bar et al., Tropomodulin protects alpha-catenin-dependent junctionalactin networks under stress during epithelial morphogenesis, Current biology : CB, vol.22, pp.1500-1505, 2012.

S. Quintin, S. Wang, J. Pontabry, A. Bender, F. Robin et al., Non-centrosomal epidermal microtubules act in parallel to LET-502/ROCK to promote C. elegans elongation, Development, vol.143, pp.160-173, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01538537

S. Wang, D. Wu, S. Quintin, R. A. Green, D. K. Cheerambathur et al., NOCA-1 functions with gamma-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C, vol.4, p.8649, 2015.

C. H. Chen, C. W. He, C. P. Liao, and C. L. Pan, A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling, PLoS Genet, vol.13, 2017.

P. K. Shah, M. R. Tanner, I. Kovacevic, A. Rankin, T. E. Marshall et al., PCP and SAX-3/Robo Pathways Cooperate to (n=26/27 unaffected control embryos; n=16/21 affected rab-1(RNAi) embryos) and UNC-112 ::GFP (n=33/36 unaffected control embryos, 2017.

, All embryos are imaged at the 2-fold stage. Scale bars: 5 µm. represented by a white line in the associated picture: E-cad is localised above the junction marker DLG-1 (purple). C-D VAB-9, another component of AJs [S3], also remains apical above DLG-1 upon rab-1 depletion (n=13 embryos) as in control (n=14 embryos). E-H E-cad localisation is not affected upon unc-112 depletion: the weak planar polarity (G) and the signal intensity at the L-L and L-D/V junctions (H) are conserved. I-K FRAP experiments performed in 1.5-fold stage embryos show that E-cad dynamics is not affected in the absence of RAB-1 (n=7 junctions for control, n=8 for RNAi embryos), as depicted on the recovery curves (J; error bars indicate standard deviation) and the percentages of mobile and immobile fractions (K). L-M Transmission electron microscopy (TEM) reveals that the electron-dense region corresponding to the junctions (orange arrowhead) is still properly localised upon rab-1 depletion in these cross-sections of lateral cells; however Golgi cisternae (white arrowhead) were systematically curled in rab-1(RNAi) embryos (n?3 embryos for each condition). N-Q Apico-basal polarity is not affected upon rab-1 depletion, Orange arrowheads show normal staining, white arrowheads indicate areas of interrupted staining. M Number and percentage of embryos and cells displaying cells with a D/V elongation axis instead of the normal A/P elongation axis observed in control embryos at the 2-fold stage. rab-1

M. Ramirez-san-juan, G. R. Oakes, P. W. Lewellyn, L. Fairchild, M. J. Tanentzapf et al., Before the 1.5-fold stage actin is disorganised and actomyosin contractions in lateral cells drive elongation; the PAR module starts to be recruited in an unpolarised manner. From the 1.5-fold stage muscle contractions promote the assembly and the stabilisation of CeHDs [S4] to enable force transmission between muscles and the dorsal and ventral epidermis through molecular tendons during morphogenesis. This force is then relayed by adherens junctions from the dorsal and ventral epidermis to the lateral epidermis. This leads to bipolar PAR planar polarity and ultimately actin orientation along the dorso-ventral axis, a prerequisite to properly control cell shape changes and therefore elongation along the antero-posterior axis, orange arrowheads indicate proper localisation, apical for CHE-14 or at the lateral membrane for LET-413. All embryos are imaged at the 2-fold stage including for the TEM pictures, except in I (1.5-fold) Ap: apical; Bl: basolateral. Scale bars: 5 µm, except for small insets: 2 µm, and for L-M: 0.5 µm. R Working model, vol.5, pp.1833-1842, 2010.

J. S. Simske, M. Koppen, P. Sims, J. Hodgkin, A. Yonkof et al., The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans, Nature cell biology, vol.5, pp.619-625, 2003.

H. Zhang, F. Landmann, H. Zahreddine, D. Rodriguez, M. Koch et al., A tension-induced mechanotransduction pathway promotes epithelial morphogenesis, Nature, vol.471, pp.99-103, 2011.