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ABSTRACT ��

 ��

Cardiac resynchronization therapy (CRT) improves mortality, morbidity and quality of life in ��

selected heart failure patients with severe left ventricular ejection fraction impairment.  ��

However, between 20% and 40% of device recipients do not benefit clinically from CRT. ��

Indeed, some anatomical and technical difficulties are related to the coronary venous ��

implantation site via the coronary sinus (CS).  Additionally, electrical constraints have been ��

described and CS does not always correspond to the optimal LV lead position. In the last 	�

decade, engineers and physicians work together to overcome the challenging LV lead 
�

implantation and various bi-ventricular pacing alternatives have been developed to improve ���

CRT response. In this review, we discuss the evolution from the CS pacing to wireless LV ���

stimulation and His bundle pacing.  ���

 ���

KEW WORDS:  Cardiac resynchronization therapy, non-responder, optimal left ventricular ���

lead location, endocardial stimulation, leadless stimulation  ���



��
�

INTRODUCTION ��

 ��

Cardiac resynchronization therapy (CRT) improves mortality, morbidity and quality of ��

life in selected heart failure (HF) patients with severe left ventricular ejection fraction (LVEF) ��

impairment (1-7). Left ventricular (LV) pacing is conventionally achieved with an epicardial ��

LV lead, placed into one of the branches of the CS, mainly lateral or postero-lateral in ��

location. However, between 20% and 40% of device recipients do not benefit clinically from ��

CRT (7). In addition, some patients eligible do not receive CRT due to anatomical and 	�

technical difficulties, such as an unsuitable CS anatomy, chronic occlusion of venous access, 
�

phrenic nerve stimulation or high pacing threshold in areas of extensive myocardial scar (8-9).  ���

To overcome these challenges, bi-ventricular pacing alternatives have been described, ���

such as surgical epicardial leads or transeptal LV endocardial leads (10-12). However, these ���

strategies expose the patient to high surgical risks for the epicardial approach or ischemic ���

stroke for endocardial approach (13). Furthermore, the lead remains the Achilles heel of these ���

strategies. Nevertheless, LV endocardial (LVendo) pacing has shown promising results and ���

may allow a higher number of site implantation locations compared to conventional CRT. ���

These encouraging effects are counterbalanced by the relative complexity of the lead ���

implantation and the risk of stroke. Currently, LVendo leadless stimulation has been �	�

developed and demonstrated clinical feasibility and benefits in patients with failed CRT �
�

implantation or non-response to conventional CRT (14-15).  ���

In current practice, placing the LV lead via the CS is the dominant strategy with ���

sometimes anatomical limitations and thus conventional approach may not be sufficient. From ���

the CS epicardial stimulation to the leadless endocardial pacing, engineers and physicians ���

have been developing alternative LV pacing approaches to improve CRT. This review aims to ���



��
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describe these different approaches and the evolution that has been taking place from LV ��

epicardial to LVendo techniques. ��

 ��

THE BENEFIT AND LIMITS OF CARDIAC RESYNCHRONIZATION  THERAPY ��

IN PATIENTS WITH HEART FAILURE ��

 ��

There are now numerous landmark trials establishing the efficacy of CRT therapy in ��

patients with HF. MUSTIC (Multisite Stimulation in Cardiomyopathies) trial was the first to 	�

evaluate the benefit of CRT in severe HF patient (NYHA III). Biventricular pacing 
�

significantly improved patients’ exercise tolerance, quality of life and risk of hospitalization ���

(decreased by 2/3) (1). Similarly, MIRACLE (Multicenter Insync Randomized Clinical ���

Evaluation) trial assessed the benefit of CRT in 453 patients with advanced HF (NYHA ���

III/IV) (2). Indeed, CRT was associated with LV chronic reverse remodeling, improvement of ���

the quality of life and a 40% decrease of death or HF hospitalization. Similar results were ���

reported in the CARE-HF (Cardiac Resynchronization on Morbidity and Mortality in Heart ���

Failure) trial among patients with NYHA III/IV status (3). The benefit of CRT in patients ���

with mildly symptomatic HF was assessed in the REVERSE-HF, MADIT-CRT and RAFT ���

trials, including mostly patients with NYHA I/II. In this population, CRT was associated with �	�

LV reverse remodeling and a reduction in HF hospitalizations of between 25% and 50% (4-6). �
�

Among these studies of mild-HF CRT recipients, the RAFT trial was the only one to show a ���

positive impact on mortality with a 25% risk reduction (6). Currently, CRT is highly ���

recommended for symptomatic HF patients in sinus rhythm with severe LVEF (<35%) and ���

large left bundle branch block (>150ms) (7) but also at a lower level in patients with LBBB ���

and QRS duration between 120 to 150 ms. For patients without LBBB the class of ���

recommendation is lower. Unfortunately, not all patients respond favorably to CRT with a ���
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non-responders rate between 20% and 40% (8-10). Therefore, research related to the ��

mechanism underlying response (and failure to respond) has been performed and some factors ��

specific to each patient have been associated with a lower response rate to this therapy (e.g. ��

narrower QRS, QRS morphology, underlying cardiomyopathy).  ��

 ��

CORONARY SINUS VEIN: A CONVENTIONAL APPROACH WITH H IGH ��

BENEFIT BUT ALSO WITH LIMITS ��

 	�

Coronary sinus vein provides an optimal lead location in a majority of CRT patients 
�

Early CRT Systems took advantage of the CS anatomy to place the LV lead due to the ���

straightforward accessibility from the venous side and reasonable ability to establish and ���

maintain capture in this location. In time, this has been improved upon but remains the first ���

line approach. A crucial determinant of successful CRT is the position of the LV pacing lead. ���

Initial hemodynamic studies have recommended that targeting the lateral or posterolateral ���

wall by way of an appropriate CS branch can improve clinical outcomes after CRT. Indeed, ���

CRT with lateral free wall stimulation produced improvements in LV systolic performance ���

with a significant increase of LV+dP/dt (max) (16). Similarly, the influence of the LV lead ���

position was assessed among 346 patients of the REVERSE cohort, revealing that the lateral �	�

position was associated with a significantly lower risk of HF hospitalization or death from any �
�

cause compared to the non-lateral placement (17). In addition, LV apical pacing has been ���

associated with poor outcomes for CRT and this placement should be avoided. Indeed, a sub ���

analysis of the MADIT-CRT trial showed that, compared to mid-ventricular or basal pacing, ���

LV apical pacing was associated with worse clinical outcomes (18). Consequently, based on ���

the hypothesis that lateral or posterolateral sites have the latest activation in a majority of ���

patients, these implant sites are commonly preferred in patients eligible for CRT (19).  ���
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Through the CS vein, CRT with LV-only pacing has also been described (20). Indeed, ��

Medtronic’s AdaptiveCRT algorithm has been developed and used the patient's intrinsic ��

conduction by pre�pacing the LV to synchronize with intrinsic right ventricular (RV) ��

activation and establish fusion. Of note, when the patient's heart rate increases > 100 bpm or ��

atrio-ventricular conduction is prolonged, the pacing mode switches automatically to bi-��

ventricular pacing. This interesting approach aims to avoid unnecessary RV pacing and has ��

been associated with reduction in death, AF and HF hospitalization (20). ��

 	�

However several reports describe a considerable variability in the LV activation 
�

pattern and distribution of mechanical dyssynchrony in case of typical LBBB. Consequently, ���

there is inter-individual inconsistency regarding the most optimal pacing site (21). ���

Furthermore, some CRT candidates do not have a typical LBBB morphology or present ���

ischemic cardiomyopathy, and thus likely have variable and heterogeneous LV activation ���

sequences (22). As a result, the optimal LV pacing site to restore LV synchrony does not ���

always correspond to the lateral or posterolateral branch of the CS vein and conventional ���

approach sometimes fails to improve HF patients. In addition, electrical constraints, such as ���

phrenic nerve stimulation, and occluded CS anatomy or other anatomical constraints can limit ���

procedure success. �	�

 �
�

Coronary sinus: electrical and/or mechanical constraints ���

Discordance between the CS and the optimal position for LV stimulation has been ���

described by Derval et al. (23). In this study, a cohort of 35 non-ischemic patients who ���

received CRT, LV hemodynamic (dP/dTmax) response was optimized by pacing 11 LV sites. ���

None of these positions were consistently associated with the best hemodynamic ���

improvement and the distribution of the best pacing site for each individual patient was ���
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uniformly spread among the tested sites. Furthermore, CS pacing was the best pacing site in ��

only 3 patients (9%) and had no or detrimental effect in 8 patients (23%). These results are ��

consistent with results previously described by Dekker et al. who found that the ��

hemodynamic response to biventricular pacing varied widely based on LV site (24). ��

According to these results, the best site is not a predetermined area of the LV but rather ��

specific to each patient.  ��

Whether there is any benefit in targeting the area of maximal mechanical delay was ��

studied in the prospective TARGET (Targeted Left Ventricular Lead Placement to Guide 	�

Cardiac Resynchronization Therapy) study (25). In a cohort of 220 patients, the impact of 
�

targeting the LV lead at the most delayed viable segment defined by speckle-tracking ���

echocardiography was compared the standard clinical practice. After 6 months of CRT, there ���

was a significantly higher rate of responders in the TARGET group compared to the control ���

group (70% vs. 55% respectively) and a lower rate of death and HF hospitalization. Although ���

imaging technique improves CRT response and avoids the LV lead placement in scar areas, it ���

is time-consuming, suffers from reproducibility and may be hard to correlate with ���

fluoroscopic imaging at the time of device implantation.  ���

A more practical intra-operative measurement is the delay between QRS onset on the ���

surface ECG and the LV electrograms (i.e. so called “Q-LV” interval). As previously �	�

described, pacing at the longest delay site was strongly associated with LV reverse �
�

remodeling and the alleviation of symptoms. In addition, multivariable analysis shows that ���

longer Q-LV interval of � 95ms predicts better CRT response (26). However, the anatomy of ���

the CS vein limits the number of Q-LV measurement sites and can contribute to suboptimal ���

LV lead location.   ���

 ���

Coronary sinus related anatomical constraints  ���
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Several lead-related issues complicate conventional CRT, such as the absence of ��

appropriate CS vein, a challenging CS venous anatomy, lead displacement and high pacing ��

threshold in an area of scar (27). Due to these difficulties, up to 30% of transvenous LV lead ��

placements fail or result in limited or no clinical response, a challenge which may be ��

overcome with the development of new technology (28). Indeed, new quadripolar LV leads, ��

which enable a greater number of pacing configurations, have recently been introduced and ��

were associated with a very low rate of phrenic nerve stimulation and an overall improvement ��

in therapeutic performance (29). Recently, multipoint pacing (MPP) has been developed using 	�

a unique quadripolar LV lead and a dedicated algorithm enabling two LV stimulations from 
�

two separate dipoles located in the same CS branch (Figure 1, Panel A). In early testing, ���

MPP led to more homogeneous electromechanical activation and had significantly better ���

acute hemodynamic response (AHR), functional improvement and reverse remodeling than ���

was achieved through conventional biventricular pacing (30). Currently, the MORE-CRT ���

MPP (MOre REsponse on Cardiac Resynchronization Therapy With MultiPoint Pacing) trial ���

is evaluating the impact of MPP in the treatment of non-responder patients to standard CRT ���

<NCT02006069>.  ���

 ���

Multisite pacing has also been proposed as another LV stimulation configuration �	�

(Figure 1, Panel B). Indeed, this stimulation scheme uses two leads implanted in two separate �
�

CS tributaries aiming to obtain a more rapid and homogeneous LV activation pattern. The ���

approach has been evaluated in a randomized study and appears to be feasible (31) but is ���

associated with a high rate of adverse events and to this point has not shown significant long-���

term clinical benefits (32).  ���

  ���
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ALTERNATIVE LEAD PLACEMENT FOR LEFT VENTRICULAR STI MULATION ��

IN CASE OF FAILED CORONARY SINUS APPROACH  ��

 ��

Despite the development of multipolar LV electrodes and multipoint pacing, clinical ��

non response due to suboptimal lead positioning remains a critically relevant problem.  ��

Additionally, unsuitable CS vein anatomy leads to failed procedures, causing physicians have ��

to propose alternative solutions. Surgical LV epicardial lead, LVendo lead placement or more ��

recently His bundle pacing (HBP) have been described as options to overcome the 	�

challenging CS approach. 
�

 ���

Surgical left ventricular epicardial stimulation ���

Epicardial LV lead placement through a small lateral thoracotomy or using ���

thoracoscopic techniques has been evaluated to overcome these obstacles and has been shown ���

to be feasible (11) (Figure 1, Panel C). Furthermore, surgical epicardial LV lead placement ���

can provide the flexibility for lead placement at a position anticipated to have maximal ���

dyssynchrony. However, such an approach is appropriate only if a cardiac surgical service is ���

available in the implanting center. Additionally, previous study showed that epicardial LV ���

lead placement did not result in significant improvement of LVEF or cardiac perfusion (33). �	�

Lastly, access to the basal posterolateral aspect of the LV with a surgical lead can be �
�

relatively difficult and may not always be achieved in clinical practice (34). Currently, ���

epicardial LV lead indication is mainly limited to re-implantation after device infection or for ���

children with congenital heart disease who need to be permanently paced (35).  ���

 ���

Endocardial left ventricular stimulation ���
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In some cases of unsuccessful transvenous implantation or non-response to CRT, ��

operators have developed an alternative technique and implanted the LV lead in the LV ��

endocardium through a transseptal atrial or ventricular approach (12) (Figure 1, Panel D). ��

The placement of a transseptal LVendo lead was first described in 1998 and has undergone ��

multiple modifications with a superior, inferior, or mixed approach (14). Though this ��

technique is familiar to electrophysiologists, atrial transseptal puncture performed through a ��

superior venous access (subclavian/axillary vein) remains challenging and peri-procedure ��

transoesophageal echocardiography is often necessary to guide operators. Currently, atrial 	�

septum is punctured with a needle and ventricular septum puncture is performed using 
�

radiofrequency energy (12; 36). Then a balloon/dilatator may be used to dilate the orifice. A ���

wire is placed in the left cavity (atria or ventricular), serving as a guide for the introduction of ���

the stimulation lead through a deflectable sheath. Although complex, the reported procedural ���

success rates are high. The ALSYNC (ALternate Site Cardiac ResYNChronization) study ���

reported an atrial transseptal success rate of 89.4% among the 138 patients treated (37). The ���

steps of the atrial transseptal approach are illustrated in the Figure 2. In addition, Gamble et ���

al described a successful ventricular transseptal approach performed in all the 20 patients ���

recruited with mean time from venous access to passage of the sheath into the LV of 25 ���

minutes (12).  �	�

 �
�

Despite more complex implant procedure, LVendo pacing may bring several ���

advantages compared to the CS approach: 1) operators theoretically have access to all regions ���

of the LV, 2) potentially faster LV depolarization resulting from faster impulse propagation in ���

the endocardial ventricular layers than the epicardial ones, 3) more physiologic LV ���

stimulation, preserving the transmural activation and repolarization sequence, and 4) ���

elimination of phrenic nerve stimulation as a concern (14;15). Indeed, Derval et al. tested ���



���
�

endocardial and epicardial pacing at the exact same location in human subjects and showed ��

that LVendo pacing provided a significant benefit in diastolic, but not systolic function (22). ��

In addition, the study showed that the best sites were frequently accessible only via the ��

endocardial approach. LVendo pacing has also been evaluated in ischemic cardiomyopathy ��

with poor response to conventional CRT (38). In this study, 8 patients underwent cardiac ��

magnetic resonance mapping which was compared to extensive invasive electroanatomic ��

mapping to target optimal LVendo pacing sites and avoid the scar areas. A total of 135 ��

epicardial and endocardial sites were evaluated during this study. LVendo pacing showed 	�

superior AHR as well as shorter stimulation-QRS duration and paced QRS compared to CS 
�

pacing. Of note, in 6 of 8 patients, there was no correlation between the optimal LVendo site ���

and the site of latest electrical activation on electroanatomic mapping due to slow conduction ���

areas inside islands of scar.  ���

 ���

Concretely, the efficacy of LVendo lead has been evaluated in the ALSYNC study that ���

enrolled a population who had previously failed to conventional CRT implantation or ���

classified as non-responder to CRT (37). The study showed that 55% and 59% of patients had ���

a reduction in LV end-systolic volume of at least 15%, and achieved an improvement by � 1 ���

NYHA class, respectively. Of note, 33% of the patients showed ‘super-response’ at 6 months. �	�

Recently, a meta-analysis estimated the clinical response rate as 82% using this approach �
�

(39).  ���

 ���

Despite these advantages, there are some drawbacks of this strategy. The main and ���

most serious concern is the risk of thrombo-embolic events that requires long-term ���

anticoagulation. In the ALYNSC study, 6-month after implantation, 17.8% patients had at ���

least one endocardial LV lead-related complication, with an incidence of thrombo-embolic ���
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and transient ischemic attack events at 2.6 and 7.4 per 100 patient-years; respectively (37). ��

Similar results were found in a meta-analysis with an incidence of stroke and transient ��

ischemic attack of 2.5 and 2.6 events per 100 patient-years (39). In addition, this procedure ��

necessitates a transseptal puncture to reach the LV, which holds inherent risks. ��

 ��

In the light of these results and associated complications, endocardial pacing shows ��

promise with a more physiological LV stimulation compare to CS pacing. However, the ��

endocardial lead remains a critical shortcoming of this approach, given the associated risk of 	�

stroke, the need for long-term of vitamin K antagonist therapy and drug monitoring. In 
�

addition, atrial or ventricular transseptal approaches add difficulty to the CRT implantation ���

procedure (12).  ���

 ���

Resynchronization using His bundle pacing  ���

Permanent HBP has recently emerged as a more physiological form of ventricular ���

pacing and viable alternative to CRT. Indeed, previous study demonstrated that His ���

resynchronization is achieved by recruiting LV conduction fibers (40). Briefly, the dedicated ���

SelectSecure HB pacing lead (Medtronic Inc, Minneapolis, MN) is delivered through a fixed ���

curve sheath or a deflectable sheath. During procedure, HB electrograms are carefully �	�

mapped and paced with the dedicated lead until pacing recruited the diseased bundle and �
�

narrowed the QRS duration by at least 20%. The lead is then screwed into position by means ���

of 4–5 clockwise rotations. Of note, the HB is surrounded by fibrous tissue and the average ���

capture thresholds tend to be higher than routine RV pacing but capture thresholds above ���

2.5V/1ms would must make the operator consider re-implantation lead (41).  ���

 ���
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Feasibility and safety of HBP CRT eligible patients have been demonstrated among ��

106 CRT candidates or patients with failed conventional approach. In this cohort, HBP was ��

successful in 90% and both groups experienced significant QRS duration narrowing (from ��

157±33ms to 117±18ms). Additionally, HBP patients exhibited clinical and ��

echocardiographic improvement during follow-up but with 7% of loss of bundle branch ��

recruitment (42). Similarly, hemodynamic performance and electrical activation mapping ��

have been compared using HBP and conventional biventricular pacing (43). Authors ��

demonstrated that acute hemodynamic response was higher when delivered using HBP than 	�

bi-ventricular pacing. Furthermore, activation map obtained during HBP showed resolution of 
�

the LBBB and provided more homogeneous LV resynchronization than bi-ventricular pacing. ���

Lastly, current study highlighted the promising results of CRT using HBP in patients with ���

right BBB and reduced LVEF (44). Currently, the HIS-SYNC (His Bundle Pacing versus ���

Coronary Sinus Pacing for Cardiac Synchronization Therapy) trial is comparing HBP to bi-���

ventricular pacing and should provide important information regarding the impact of ���

resynchronization using HBP <NCT02700425>. ���

 ���

In the light of these data, HBP seems hopeful for CRT and when compared to LVendo ���

lead, this techniques avoids the thrombo-embolic and transseptal puncture risks. However, the �	�

biggest limitation of permanent HBP is the inability to map the HB and perform implantation �
�

of the lead at the HB in 10% of cases.  Additionally, the need for higher pacing output might ���

result in shorter battery longevity of devices. Lastly, endocardial lead remains the Achilles ���

heel of HBP.   ���

 ���

LEADLESS LEFT VENTRICULAR PACING: THE NEXT ADVANCE FOR ���

PATIENTS WITH A FAILED CORONARY SINUS APPROACH? ���



���
�

  ��

Evidence of left ventricular leadless pacing benefit ��

Despite significant advances, transvenous leads have remained the greatest weakness ��

of pacing devices. In an attempt to address these lead-related acute and chronic complications, ��

leadless cardiac pacing has been developed. The last technological prowess is probably the ��

development of CRT using a leadless endocardial LV electrode (Figure1, Panel E) (WiSE-��

CRT, EBR Systems, Sunnyvale, California). Recently, a case of an entirely leadless CRT was ��

published, providing a tantalizing view of the potential future of CRT (45) (Figure 1, Panel 	�

F).   
�

Briefly, the WiSE-CRT system provides wireless pacing by transmitting acoustic ���

energy from a pulse generator transmitter, implanted subcutaneously above an intercostal ���

space, to a receiver electrode implanted in the LV wall, which converts the acoustic energy to ���

electrical pacing energy. The WiSE-CRT System is co-implanted with any pacemaker, ICD, ���

or CRT device, which provides RV pacing. Biventricular pacing is achieved by sensing the ���

RV pacing signal of the co-implant device, and using it as a trigger for LV stimulation. ���

Implanting the WiSE-CRT System typically requires a 2-step process. First, the pulse ���

generator system is surgically implanted in one of the left subcutaneous intercostal spaces (4th ���

to 6th) adjacent to the parasternal border. Second, the wireless electrode is implanted in the �	�

LV wall with anchor barbs via a transaortic retrograde or transseptal approach. In addition to �
�

the leadless pacing advantages, LV electrode could offer the opportunity for congenital heart ���

disease and a uni-ventricular heart to receive minimally invasive non thoracotomy pacing ���

systems. ���

 ���

The feasibility and safety of the WiSE system was evaluated in the WiSE-CRT ���

(Wireless Stimulation Endocardially for CRT) study (46). Seventeen patients were enrolled ���
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and at 6-month follow-up, all the implanted patients (n=13) were alive, though 7 serious ��

adverse events occurred in 6 patients (35%). The system performance was also assessed with ��

biventricular pacing recorded in 92% of the patients at 6 months. In addition, two-thirds of the ��

patients had at least one functional class change and a significant 6-point increase in LVEF. ��

However, because of a very high incidence of pericardial tamponade (18%), the study was ��

stopped after 17 patients. A new generation device was developed with the addition of a ��

balloon to facilitate atraumatic engagement with the LV endocardium. Recently, the ��

SELECT-LV study evaluated the performance of the new version of the wireless electrode 	�

(47). A total of 39 patients were enrolled and 35 underwent the procedure, which was 
�

successful in 34 patients. Of note no pericardial effusions occurred. At 6-month follow-up, bi-���

ventricular pacing was achieved in 93.9% of patients and 84.8% had improvement in the ���

clinical composite score. During follow-up, one pocket hematoma and two confirmed ���

subcutaneous device-related infections occurred and device extraction was performed in one ���

patient. Future planned enhancements, such as a smaller pulse generator and different delivery ���

catheter designs are in development, which may reduce the risk of complications. Currently, ���

the SOLVE-CRT (Stimulation Of the Left Ventricular Endocardium for Cardiac ���

Resynchronization Therapy in Non-Responders and Previously Untreatable Patients) study ���

was recently launched to evaluate the safety and efficacy in a cohort of 350 patients and will �	�

probably provide stronger benefit information < NCT02922036>.  �
�

 ���

How to achieve the optimal LV electrode placement site ���

The optimal LVendo pacing location exhibits marked variability in ischemic and non-���

ischemic cardiomyopathy and physicians may use a combination of either preprocedural or ���

periprocedural imaging and/or electrophysiology mapping criteria to identify the best pacing ���

sites. Recently, a multicenter study hypothesized that guided the placement of the wireless ���
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pacing electrode would achieve greater improvements in CRT response (48). Different ��

strategies were used: 1) echocardiography to identify the latest mechanical activated LV ��

segment, 2) cardiac magnetic resonance determined the latest activation area and scar, 3) ��

electro-anatomical mapping to identify areas with late electrical activation and low voltages ��

or 4) electrical latency parameters (i.e. Q-LV duration and Q-LV/QRS ratio) (49). In the 4th ��

approach, Q-LV interval <100ms were excluded and the viability was assessed by excluding ��

any sites with a pacing capture threshold >2V. During each procedure, AHR was measured to ��

assess the immediate response to LVendo pacing. The target site identified with pre-	�

procedural imaging was reached in 92% of patients and a strong linear relationship between 
�

AHR and both Q-LV and Q-LV/QRS ratio was observed, especially in the case where the Q-���

LV/QRS ratio was >0.5 at the pacing site. This suggests that patients will be more prone to a ���

reverse remodeling if a site with a LV/QRS ratio of >0.5 is selected. Results showed that ���

guidance for the optimal site selection of a wireless LV electrode improves chronic reverse ���

remodeling at a rate of 71% and thus may increase the rate of responders to CRT. Figure 3 ���

synthesizes the main strategies used to guide LVendo lead implantation and proposes concrete ���

clinical application.  ���

 ���

Limits of the wireless left ventricular electrode �	�

There are several potential limitations to the wireless LV electrode approach. First, for �
�

optimal LVendo pacing, the transmitter must target the electrode to efficiently focus acoustic ���

energy. A severe angulation or a large distance (>10cm) between the transmitter and electrode ���

reduces the system efficiency. To address this, the location, distance, and angle of the ���

electrode are tracked in real time during implantation by the transmitter’s tracking algorithm. ���

Moreover, the system requires an acoustic window in order to transmit ultra-sound ���

effectively. Second, in case of large dilated cardiomyopathy, it may be difficult to reach some ���
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areas of left lateral free wall, since the current delivery sheath has one unique curve, which ��

could limit implantation in the basal area. Lastly, similarly to LVendo lead complication, ��

thromboembolic events could occur in patients implanted with a WiSE electrode.  ��

 ��

Future direction ��

Recently, two novel resynchronization techniques seem promising: HBP and LV ��

wireless electrode. However, trans-venous lead implantation are still required for both ��

techniques (HB stimulation for the first one and RV pacing detection for the second one). The 	�

future of the CRT might be written in the combination of these two systems and the 
�

development of leadless HBP leading to an entirely leadless resynchronization using a mono-���

electrode. ���

 ���

CONCLUSION ���

 ���

Several methods have been proposed to improve CRT and decrease unsuccessful ���

procedures, each with advantages and disadvantages (Figure 4). While current alternatives to ���

optimize LV stimulation using surgical epicardial leads or LV endocardial leads have shown ���

promise, none have proved to be ideal. Recently, HBP has demonstrated interesting results �	�

and represents promising alternative to conventional bi-ventricular pacing. Lastly, leadless �
�

endocardial strategy provides an individualized optimized LV lead location coupled with ���

more physiological endocardial activation. Future clinical use and randomized clinical trials ���

will help us to evaluate the safety and efficacy of this invasive technique and clarify the place ���

of LV leadless stimulation in our current clinical practice. ���

���
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FIGURE TITLES AND LEGENDS ��

 ��

FIGURE 1:Evolution of the LV pacing sites. Panel A=Multipoint pacing, Panel ��

B=Multisite pacing with two LV lead in the CS (triangles), Panel C=Surgical epicardial lead ��

(square), Panel D=LV endocardial lead using an atrial transseptal approach (arrow), Panel ��

E=LV endocardial leadless with the WiSE electrode (star), Panel F=Entirely leadless CRT ��

with a Micra pacemaker (arrow) and WiSE electrode (star). ��

CRT=Cardiac resynchronization therapy; LV=Left ventricular 	�

 
�

FIGURE 2:Illustration of atrial transseptal approach. Panels 1 to 4 represent the different ���

steps from transseptal puncture to LV lead placement. Adapted from Morgan et al (38). ���

Reproduced with permission from the European Heart Journal. ���

 ���

FIGURE 3:Main strategies described to guide LV electrode implantation and suggested ���

clinical practice application. CMR=Cardiac magnetic resonance; LV=Left ventricular. ���

 ���

FIGURE 4:Advantages/disadvantages of current approaches, alternative and future ���

directions for LV pacing. LV=Left ventricular. �	�
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