M. F. Sonnenschein, Polyurethanes: Science, Technology, Markets, and Trends, 2014.

A. Prociak, G. Rokicki, and J. Ryszkowska, , 2014.

H. Engels, H. Pirkl, R. Albers, R. W. Albach, J. Krause et al.,

J. Casselmann and . Dormish, Polyurethanes: versatile materials and sustainable problem solvers for today's challenges, Angew. Chem., Int. Ed, vol.52, pp.9422-9441, 2013.

P. Furtwengler and L. Averous, Renewable polyols for advanced polyurethane foams from diverse biomass resources, Polym. Chem, vol.9, pp.4258-4287, 2018.
DOI : 10.1039/c8py00827b

J. Datta and M. Wloch, Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di-or polyamines in the context of structure-properties relationship and from an environmental point of view, Polym. Bull, vol.73, pp.1459-1497, 2016.

G. Rokicki, P. G. Parzuchowski, M. Masurek, and . Polym, Non-isocyanate polyurethanes: synthesis, properties, and applications, Adv. Technol, vol.26, pp.707-761, 2015.
DOI : 10.1002/pat.3522

L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s, Chem. Rev, vol.115, pp.12407-12439, 2015.
DOI : 10.1021/acs.chemrev.5b00355

URL : https://hal.archives-ouvertes.fr/hal-01365096

V. Besse, F. Camara, F. Méchin, E. Fleury, S. Caillol et al., How to explain low molar masses in PolyHydroxyUrethanes (PHUs), Eur. Polym. J, vol.71, pp.1-11, 2015.
DOI : 10.1016/j.eurpolymj.2015.07.020

URL : https://hal.archives-ouvertes.fr/hal-01181343

H. Blattmann, M. Fleischer, M. Bähr, and R. Mülhaupt, Isocyanate-and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide, Macromol. Rapid Commun, vol.35, pp.1238-1254, 2014.

B. Nohra, L. Candy, J. Blanco, C. Guerin, Y. Raoul et al., From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes, Macromolecules, vol.46, pp.3771-3792, 2013.
DOI : 10.1021/ma400197c

O. Kreye, H. Mutlu, and M. A. Meier,

, Green Chem, vol.15, pp.1431-1455, 2013.

M. Helou, J. Carpentier, and S. M. Guillaume, Poly(carbonate-urethane): an isocyanatefree procedure from ?,?-di(cyclic carbonate) telechelic poly
DOI : 10.1039/c0gc00686f

URL : https://hal.archives-ouvertes.fr/hal-00632149

, Green Chem, vol.13, pp.266-271, 2011.

N. Kihara and T. Endo, Synthesis and properties of poly(hydroxyurethane)s, J. Polym. Sci. Part A, vol.31, pp.2765-2773, 1993.
DOI : 10.1002/pola.1993.080311113

M. S. Kathalewar, P. B. Joshi, A. S. Sabnis, and V. C. Malshe, Non-isocyanate polyurethanes: from chemistry to applications, RSC Adv, issue.3, p.4110, 2013.
DOI : 10.1039/c2ra21938g

O. Figovsky, L. Shapovalov, A. Leykin, O. Birukova, and R. Potashnikova, Advances in the field of non-isocyanate polyurethanes based on cyclic carbonates, Chem. Chem. Technol, vol.7, pp.79-87, 2013.

H. Tomita, F. Sanda, and T. Endo, Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction, J. Polym. Sci. Part A, vol.39, pp.851-859, 2001.

H. Tomita, F. Sanda, and T. Endo, Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine, J. Polym. Sci. Part A, vol.39, pp.3678-3685, 2001.

A. Steblyanko, W. Choi, F. Sanda, and T. Endo, Addition of five-membered cyclic carbonate with amine and its application to polymer synthesis, J. Polym. Sci. Part A, vol.38, pp.2375-2380, 2000.
DOI : 10.1002/1099-0518(20000701)38:13<2375::aid-pola100>3.0.co;2-u

A. Cornille, M. Blain, R. Auvergne, B. Andrioletti, B. Boutevin et al., A study of cyclic carbonate aminolysis at room temperature: effect of cyclic carbonate structures and solvents on polyhydroxyurethane synthesis, Polym. Chem, vol.8, pp.592-604, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01438498

B. Ochiai, S. Inoue, and T. Endo, Salt effect on polyaddition of bifunctional cyclic carbonate and diamine, J. Polym. Sci. Part A, vol.43, pp.6282-6286, 2005.
DOI : 10.1002/pola.21081

H. Tomita, F. Sanda, and T. Endo, Polyaddition behavior of bis(five-and six-membered cyclic carbonate)s with diamine, J. Polym. Sci., Part A: Polym. Chem, vol.39, pp.860-867, 2001.
DOI : 10.1002/1099-0518(20010315)39:6<860::aid-pola1059>3.0.co;2-2

H. Tomita, F. Sanda, and T. Endo, Polyaddition of bis(seven-membered cyclic carbonate) with diamines: a novel and efficient synthetic method for polyhydroxyurethanes, J. Polym. Sci., Part A: Polym. Chem, vol.39, pp.4091-4100, 2001.

D. J. Fortman, J. P. Brutman, M. A. Hillmyer, and W. R. Dichtel, Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes, J Appl Polym Sci, vol.134, p.44984, 2017.

H. Matsukizono and T. Endo, Reworkable Polyhydroxyurethane Films with Reversible Acetal Networks Obtained from Multifunctional Six-Membered Cyclic Carbonates, J. Am. Chem. Soc, vol.140, pp.884-887, 2018.
DOI : 10.1021/jacs.7b11824

H. Matsukizono and T. Endo, Synthesis and hydrolytic properties of water-soluble poly(carbonate-hydroxyurethane)s from trimethylolpropane, Polym. Chem, vol.7, pp.958-969, 2016.
DOI : 10.1039/c5py01733e

B. Nohra, L. Candy, J. Blanco, Y. Raoul, and Z. Mouloungui, Synthesis of five and sixmembered cyclic glycerilic carbonates bearing exocyclic urethane functions, Eur. J. Lipid. Sci. Tech, vol.115, pp.111-122, 2013.
DOI : 10.1002/ejlt.201200082

H. Tomita, F. Sanda, and T. Endo, Reactivity comparison of five-and six-membered cyclic carbonates with amines: basic evaluation for synthesis of poly(hydroxyurethane), J. Polym. Sci., Part A: Polym. Chem, vol.39, pp.162-168, 2001.

L. Maisonneuve, A. Wirotius, C. Alfos, E. Grau, and H. Cramail, Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors, Polym. Chem, vol.5, pp.6142-6147, 2014.
DOI : 10.1039/c4py00922c

URL : https://hal.archives-ouvertes.fr/hal-01366250

A. Yuen, A. Bossion, E. Gomez-bengoa, F. Ruipérez, M. Isik et al.,

Y. Y. Mecerreyes, H. Yang, and . Sardon, Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates, Polym. Chem, vol.7, pp.2105-2111, 2016.

G. Fiorani, W. Guo, and A. W. Kleij, Sustainable conversion of carbon dioxide: the advent of organocatalysis, Green Chem, pp.1375-1389, 2015.

M. Alves, B. Grignard, R. Mereau, C. Jerome, T. Tassaing et al., Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies, Catal. Sci. Technol, 2017.

E. Vanbiervliet, S. G. Fouquay, F. Michaud, J. Simon, S. M. Carpentier et al., From Epoxide to Cyclodithiocarbonate Telechelic Polycyclooctene through ChainTransfer Ring-Opening Metathesis Polymerization (ROMP): Precursors to NonIsocyanate Polyurethanes (NIPUs), Macromolecules, vol.50, pp.69-82, 2017.
DOI : 10.1021/acs.macromol.6b02137

URL : https://hal.archives-ouvertes.fr/hal-01475457

Y. Zhang, A. Sudo, and T. Endo, Syntheses of bisphenol-type oligomers having fivemembered dithiocarbonate groups at the terminals and their application as accelerators to epoxy-amine curing system, J. Polym. Sci. A: Polym. Chem, vol.46, pp.1907-1912, 2008.

M. Horikiri, A. Sudo, and T. Endo, Acceleration effect of five-membered cyclic dithiocarbonate on an epoxy-amine curing system, J. Polym. Sci.: Part A: Polym. Chem, vol.45, pp.4606-4611, 2007.
DOI : 10.1002/pola.22198

A. Suzuki, D. Nagai, B. Ochiai, and T. Endo, Facile synthesis and crosslinking reaction of trifunctional five-membered cyclic carbonate and dithiocarbonate, J. Polym. Sci. Part A, vol.42, pp.5983-5989, 2004.
DOI : 10.1002/pola.20436

H. Tomita, F. Sanda, and T. Endo, Polyaddition of Bis(cyclic thiocarbonate) with Diamines
DOI : 10.1021/ma001353l

, Novel Efficient Synthetic Method of Polyhydroxythiourethanes. Macromolecules, vol.34, pp.727-733, 2001.

T. Moriguchi and T. Endo, Polyaddition of Bifunctional Dithiocarbonates Derived from Epoxides and Carbon Disulfide. Synthesis of Novel Poly(thiourethanes), Macromolecules, vol.28, pp.5386-5387, 1995.
DOI : 10.1021/ma00119a035

D. J. Darensbourg, S. J. Wilson, and A. D. Yeung, Oxygen/Sulfur Scrambling During the Copolymerization of Cyclopentene Oxide and Carbon Disulfide: Selectivity for Copolymer vs Cyclic, Thio]carbonates. Macromolecules, vol.46, pp.8102-8110, 2013.

M. P. Garcia, M. Weis, A. Lanver, M. Blanchot, A. Flores-figueroa et al.,

O. Haaf and . Kutzki, Polymerizable Alkylidene-1, 3-Dioxolane-2-One and Use Thereof, US Patent Application, 2013.

V. Mormul, R. Klopsch, M. Yu, G. Scherr, and D. Ghislieri,

U. Licht, K. Schumacher, R. Klopsch, and D. Ghislieri, Copolymer made from cyclic exovinyl carbonate acrylates, EP 15172703, vol.9, 2015.

U. Licht, V. Leonhardt, K. Mormul, G. Schumacher, R. Boerzsoenyl et al.,

. Ghislieri, Compounds comprising two or more exovinylene cyclic-carbonate units, EP 15172703, vol.9, 2015.

S. Gennen, B. Grignard, T. Tassaing, C. Jérôme, and C. Detrembleur, CO2-Sourced ?-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s, Angew. Chem. Int. Edit, vol.56, pp.10394-10398, 2017.

N. B. Chernysheva, A. A. Bogolyubov, and V. V. Semenov, Formation of oxazolidone from an ?-alkylidene cyclocarbonate at room temperature was also described; see, Chem. Heterocyc. Compd, vol.35, pp.216-224, 1999.

T. Watai, M. Takase, T. Sagae, S. Mori, and N. Kawahara, Process for Producing, 2004.

M. Ionescu, Rapra Technology, Shrewsbury, UK 47 Functional Liquid Polymers -Poly bd?, Chemistry and Technology of Polyols for Polyurethane, 2007.

L. Annunziata, A. K. Diallo, S. Fouquay, G. Michaud, F. Simon et al.,

S. M. Carpentier and . Guillaume, ?,?-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach, Green Chem, vol.16, pp.1947-1956, 2014.

A. K. Diallo, L. Annunziata, S. Fouquay, G. Michaud, F. Simon et al.,

J. Guillaume and . Carpentier, Ring-opening metathesis polymerization of cyclooctene derivatives with chain transfer agents derived from glycerol carbonate, Polym. Chem, vol.5, pp.2583-2591, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058100

L. Annunziata, S. Fouquay, G. Michaud, F. Simon, S. M. Guillaume et al., Mono-and di-cyclocarbonate telechelic polyolefins synthesized from ROMP using glycerol carbonate derivatives as chain-transfer agents, Polym. Chem, vol.4, pp.1313-1316, 2013.
DOI : 10.1039/c2py21141f

URL : https://hal.archives-ouvertes.fr/hal-00811417

A. K. Diallo, X. Michel, S. Fouquay, G. Michaud, F. Simon et al.,

S. M. Carpentier and . Guillaume, ?-Trialkoxysilyl Functionalized Polycyclooctenes Synthesized by Chain-Transfer Ring-Opening Metathesis Polymerization, Macromolecules, vol.48, pp.7453-7465, 2015.

S. Michel, G. Fouquay, F. Michaud, J. Simon, J. Brusson et al.,

. Guillaume, Bis(trialkoxysilyl) difunctionalized polycyclooctenes from rutheniumcatalyzed chain-transfer ring-opening metathesis polymerization, Polym. Chem, vol.7, pp.4810-4823, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357417

X. Michel, S. Fouquay, G. Michaud, F. Simon, J. Brusson et al., Tuning the properties of ?,?-bis(trialkoxysilyl) telechelic copolyolefins from ruthenium-catalyzed chain-transfer ring-opening metathesis polymerization (ROMP), Polym. Chem, vol.8, pp.1177-1187, 2017.
DOI : 10.1039/c6py02092e

URL : https://hal.archives-ouvertes.fr/hal-01515137

E. Vanbiervliet, S. Fouquay, G. Michaud, F. Simon, J. Carpentier et al., ?,?-Epoxide, oxetane and dithiocarbonate telechelic copolyolefins: access by ringopening metathesis/cross-metathesis polymerization (ROMP/CM) of cycloolefins in the presence of functional symmetric chain-transfer agents, Polymers, vol.10, pp.1241-1260, 2018.

X. Michel, S. Fouquay, G. Michaud, F. Simon, J. Brusson et al.,

G. , Simple access to alkoxysilyl telechelic polyolefins from ruthenium-catalyzed cross-metathesis depolymerization of polydiene, Eur. Polym. J, vol.96, pp.403-413, 2017.

C. Chauveau, E. Vanbiervliet, S. G. Fouquay, F. Michaud, J. Simon et al.,

G. , Azlactone telechelic polyolefins as precursors to polyamides: a combination of metathesis polymerization and polyaddition reactions, Macromolecules, vol.51, pp.8084-8099, 2018.

G. M. Sheldrick, SHELXS-97, Program for the Determination of Crystal Structures

G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, 1997.

M. Shi, Y. Shen, and Y. Chen, Reactions of 5,5-Dimethyl-4-methylene-1,3-dioxolan-2-one with Amines in the Presence of Palladium Catalyst, Heterocycles, vol.57, p.245, 2002.

, These side-reactions may be thermally promoted by the exothermic reaction between DMDO and primary amines

S. H. Hong, D. P. Sanders, C. W. Lee, and R. H. Grubbs, Prevention of Undesirable Isomerization during Olefin Metathesis, J. Am. Chem. Soc, vol.127, pp.17160-17161, 2005.
DOI : 10.1021/ja052939w

URL : https://authors.library.caltech.edu/77423/2/ja052939wsi20051024_011308.pdf

P. A. Fokou and M. A. Meier, Studying and Suppressing Olefin Isomerization Side Reactions During ADMET Polymerizations, Macromol. Rapid Commun, vol.31, pp.368-373, 2001.
DOI : 10.1002/marc.200900678

G. B. Djigoue and M. A. Meier, Improving the selectivity for the synthesis of two renewable platform chemicals via olefin metathesis, Appl. Catal. A Gen, vol.368, pp.158-162, 2009.

S. Kanaoka and R. H. Grubbs, Synthesis of Block Copolymers of Silicon-Containing Norbornene Derivatives via Living Ring-Opening Metathesis Polymerization Catalyzed by a Ruthenium Carbene Complex, Macromolecules, vol.28, pp.4707-4713, 1996.

J. C. Lee, K. A. Parker, and N. S. Sampson, Amino Acid-Bearing ROMP Polymers with a Stereoregular Backbone, J. Am. Chem. Soc, vol.128, pp.4578-4579, 2006.
DOI : 10.1021/ja058801v

URL : http://europepmc.org/articles/pmc2562595?pdf=render

R. Singh, C. Czekelius, and R. R. Schrock, Living Ring-Opening Metathesis Polymerization of Cyclopropenes, Macromolecules, vol.39, pp.1316-1317, 2006.
DOI : 10.1021/ma052560u

T. Morita, B. R. Maughon, C. W. Bielawski, and R. H. Grubbs, A Ring-Opening Metathesis Polymerization (ROMP) Approach to Carboxyl-and Amino-Terminated Telechelic Poly(butadiene)s. Macromolecules, vol.33, pp.6621-6623, 2000.
DOI : 10.1021/ma000013x

L. M. Pitet and M. Hillmyer, Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent, Macromolecules, vol.44, pp.2378-2381, 2011.
DOI : 10.1021/ma102975r

S. Kobayashi, H. Kim, C. W. Macosko, and M. A. Hillmyer, Functionalized linear lowdensity polyethylene by ring-opening metathesis polymerization, Polym. Chem, vol.4, pp.1193-1198, 2013.
DOI : 10.1039/c2py20883k

M. Shetty, V. A. Kothapalli, and C. E. Hobbs, Toward the (nearly) complete elimination of solvent waste in Ring Opening Metathesis Polymerization (ROMP) reactions, Polymer, vol.80, pp.64-66, 2015.

T. Hino, N. Inoue, and T. Endo, Ring-opening metathesis copolymerization behaviors of cyclooctene and norbornene bearing a five-or six-membered ring cyclic carbonate, J. Polym. Sci., Part A: Polym. Chem, vol.43, pp.6599-6604, 2005.
DOI : 10.1002/pola.21124

M. L. Gringolts, Y. I. Denisova, G. A. Shandryuk, L. B. Krentsel, A. D. Litmanovich et al.,

S. Finkelshtein and Y. V. Kudryavtsev, Synthesis of norbornene-cyclooctene copolymers by the cross-metathesis of polynorbornene with polyoctenamer, RSC Adv, vol.5, pp.316-331, 2015.

M. Lichtenheldt, D. Wang, K. Vehlow, I. Reinhardt, C. Kuhnel et al., Alternating Ring-Opening Metathesis Copolymerization by

. Grubbs-type, Initiators with Unsymmetrical N-Heterocyclic Carbenes, Chem. Eur. J, vol.15, pp.9451-9457, 2009.