J. He and T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, vol.357, p.1369, 2017.
DOI : 10.1126/science.aak9997

URL : http://science.sciencemag.org/content/sci/357/6358/eaak9997.full.pdf

J. D. Francis, Thermoelectric Cooling and Power Generation, Science, vol.285, pp.703-706, 1999.

G. J. Snyde and E. S. Toberer, Complex thermoelectric materials, Nat. Mater, vol.7, pp.105-114, 2008.

J. P. Rojas, D. Singh, S. B. Inayat, G. A. Sevilla, H. M. Fahad et al., Review-micro and nano-engineering enabled new generation of thermoelectric generator devices and applications, ECS J. Solid State Sci. Technol, vol.6, pp.3036-3044, 2017.
DOI : 10.1149/2.0081703jss

URL : http://jss.ecsdl.org/content/6/3/N3036.full.pdf

W. He, G. Zhang, X. Zhang, J. Ji, G. Li et al., Recent development and application of thermoelectric generator and cooler, Appl. Energ, vol.143, pp.1-25, 2015.
DOI : 10.1016/j.apenergy.2014.12.075

M. K. Kim, M. S. Kim, S. Lee, C. Kim, and Y. J. Kim, Wearable thermoelectric generator for harvesting human body heat energy, Smart Mater. Struct, vol.23, p.105002, 2014.
DOI : 10.1088/0964-1726/23/10/105002

Z. Lu, H. Zhang, C. Mao, and C. M. Li, Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body, Appl. Energ, vol.164, pp.57-63, 2016.
DOI : 10.1016/j.apenergy.2015.11.038

Z. H. Zheng, J. T. Luo, T. B. Chen, X. H. Zhang, G. X. Liang et al., Using high thermal stability flexible thin film ther moelectric generator at moderate temperature, Appl. Phys. Lett, vol.112, p.163901, 2018.
DOI : 10.1063/1.5028390

Y. Chen, Y. Zhao, and Z. Liang, Solution processed organic thermoelectrics: towards flexible thermoelectric modules, Energy Environ. Sci, vol.8, pp.401-422, 2015.
DOI : 10.1039/c4ee03297g

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, vol.413, pp.597-602, 2001.
DOI : 10.1142/9789814317665_0019

G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno et al.,

Y. , Superlattice based thin film thermoelectric modules with high cooling fluxes, Nat. Commun, vol.7, p.10302, 2016.

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

C. Chen, D. Madan, P. K. Wright, and J. W. Evans, Dispenser-printed planar thick-film thermoelectric energy generators, J. Micromech. Microeng, 2011.
DOI : 10.1088/0960-1317/21/10/104006

N. W. Park, T. H. Park, J. Y. Ahn, S. H. Kang, W. Y. Lee et al.,

S. K. Yoon and . Lee, Thermoelectric characterization and fabrication of nanostructured p-type Bi 0.5 Sb 1.5 Te 3 and n-type Bi 2 Te 3 thin film thermoelectric energy generator with an in-plane planar structure, AIP Adv, vol.6, p.65123, 2016.

P. Fan, Z. H. Zheng, Y. Z. Li, Q. Y. Lin, J. T. Luo et al.,

F. Zhang and . Ye, Low-cost flexible thin film ther moelectric generator on zinc based thermoelectric materials, Appl, Phys, Lett, vol.106, p.73901, 2015.

D. F. Ding, D. W. Wang, M. Zhao, J. W. Lv, H. Jiang et al., Interface engineering in solution-processed nanocrystal thin films for improved thermoelectric performance, Adv. Mater, vol.29, p.1603444, 2016.
DOI : 10.1002/adma.201603444

L. D. Hicks and M. S. Dresslhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, vol.47, p.16631, 1993.

J. O. Sofo and G. D. Mahan, Electronic structure of CoSb 3 : A narrow-band-gap semiconductor, Phys. Rev. B, vol.58, p.15620, 1998.
DOI : 10.1103/physrevb.58.15620

M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, and N. ,

K. Andersen, J. Lefmann, C. R. Andreasson, B. B. Bahl, and . Iversen, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater, vol.7, pp.811-815, 2008.

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

J. L. Feldman and D. J. Singh, Lattice dynamics of skutterudites: First-principles and model calculations for CoSb 3, Phys. Rev. B, vol.53, p.6273, 1996.

B. Feng, J. Xie, G. Cao, T. Zhu, and X. Zhao, Enhanced thermoelectric properties of p-type CoSb 3 /graphene nanocomposite, J. Mater. Chem. A, vol.42, pp.13111-13119, 2013.
DOI : 10.1039/c3ta13202a

M. D. Hornbostel, E. J. Hyer, J. Thiel, and D. C. Johnson,

, Metastable Skutterudite Compounds Using Multilayer Precursors, J. Am. Chem. Soc, vol.119, pp.2665-2668, 1997.

X. Shi, W. Zhang, L. D. Chen, and J. Yang, Filling Fraction Limit for Intrins ic Voids in Crystals: Doping in Skutterudites, Phys. Rev. Lett, vol.95, p.185503, 2005.
DOI : 10.1103/physrevlett.95.185503

B. R. Ortiz, C. M. Crawford, R. W. Mckinney, P. A. Parillab, and E. S. Toberer, Thermoelectric properties of bromine filled CoSb 3 skutterudite, J. Mater. Chem. A, vol.4, pp.8444-8450, 2016.
DOI : 10.1039/c6ta02116f

C. Chen, L. Zhang, J. H. Li, F. R. Yu, D. L. Yu et al., Enhanced thermoelectric performance of lanthanum filled CoSb 3 synthesized under high pressure, J. Alloys Compd, vol.699, pp.751-755, 2017.
DOI : 10.1016/j.jallcom.2016.12.425

M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe et al., High temperature transport properties of partially filled Ca x Co 4 Sb 12 skutterudites, J. Appl. Phys, vol.95, p.4852, 2004.
DOI : 10.1063/1.1688463

S. Wang, J. R. Salvador, J. Yang, P. Wei, B. Duan et al., High-performance n-type Yb x Co 4 Sb 12 : from partially filled skutterudites towards composite thermoelectrics, NPG Asia Mater, vol.8, p.285, 2016.
DOI : 10.1038/am.2016.77

URL : https://www.nature.com/articles/am201677.pdf

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t,

X. Shi, J. Yang, J. R. Salvador, M. F. Chi, J. Y. Cho et al., Multiple-Filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc, vol.133, pp.7837-7846, 2011.
DOI : 10.1021/ja211185w

G. Rogl, A. Grytsiv, K. Yubut, S. Puchegger, E. Bauer et al., In-doped multifilled n-type skutterudites with ZT = 1.8, Acta Mater, vol.95, pp.201-211, 2015.
DOI : 10.1016/j.actamat.2015.05.024

X. Y. Zhou, G. Y. Wang, L. Zhang, H. Chi, X. L. Su et al., Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion, J. Mater. Chem, vol.22, pp.2958-2964, 2012.
DOI : 10.1039/c2jm15010g

Z. H. Zheng, M. Wei, J. T. Luo, F. Li, G. X. Liang et al., Enhanced power factor via multilayer growth of Ag-doped skutterudite CoSb 3 thin films, Inorg. Chem. Front, vol.5, pp.1409-1414, 2018.
DOI : 10.1039/c8qi00207j

URL : https://hal.archives-ouvertes.fr/hal-01835024

Z. H. Zheng, M. Wei, F. Li, J. T. Luo, G. X. Liang et al.,

. Fan, Improvement of power factor of CoSb 3 thermoelectric thin films via microstructure optimization, Coatings, vol.7, p.205, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671257

J. L. Feldman and D. J. Singh, Lattice dynamics of skutterudites: First-principles and model calculations for CoSb
DOI : 10.1103/physrevb.53.6273

, Phys Rev B, vol.53, p.6273, 1996.

, Ag doped CoSb 3 films were grown directly on the heated substrate