Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Geoscience and Remote Sensing Year : 2019

Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images

Abstract

This paper proposes a new unsupervised image segmentation method for multilook polarimetric synthetic aperture radar (PolSAR) data. The statistical model for the PolSAR data is considered as a finite mixture of non-Gaussian compound distributions considered as the product of two statistically independent random variates, speckle, and texture. With different texture distributions, the product model leads to various expressions of the compound distribution. The method uses a Markov random field (MRF) model for pixel class labels. The expectation-maximization/maximization of the posterior mar-ginals (EM/MPM) algorithm is used for the simultaneous estimation of texture and speckle parameters and for the segmentation of multilook PolSAR images. Simulated and real PolSAR data are shown to demonstrate the method. Index Terms-Expectation-maximization (EM) algorithm, Markov random field (MRF), maximum-likelihood (ML), max-imization of the posterior marginals (MPM), polarimetric synthetic aperture radar (PolSAR).
Fichier principal
Vignette du fichier
IEEE_TGRS_Unsupervised_08685676.pdf (3.91 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02135202 , version 1 (21-05-2019)

Identifiers

Cite

Nizar Bouhlel, Stéphane Méric. Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (8), pp.6104-6118. ⟨10.1109/TGRS.2019.2904401⟩. ⟨hal-02135202⟩
25 View
116 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More