R. Schowengerdt, Remote Sensing: Models and Methods for Image Processing

I. Blanes, E. Magli, and J. A. Serra-sagrista, Tutorial on image compression for optical space imaging systems, IEEE Geoscience and Remote Sensing Magazine, vol.2, issue.3, pp.8-26, 2014.

A. Kravchenko, N. Kussul, E. Lupian, V. Savorsky, L. Hluchy et al., Water resource quality monitoring using heterogeneous data and high-performance computations. Cybernetics and Systems Analysis, vol.44, pp.616-624, 2008.

F. Kogan, N. Kussul, T. Adamenko, S. Skakun, A. Kravchenko et al., Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models, Journal of Automation and Information Sciences, vol.45, issue.6, 2013.

S. Skakun, N. Kussul, A. Shelestov, and O. Kussul, The use of satellite data for agriculture drought risk quantification in Ukraine. Geomatics, Natural Hazards and Risk, vol.7, pp.901-917, 2015.

A. European-space, , pp.2017-2023, 2006.

C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images. USA: SciTech Publishing

J. S. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications
URL : https://hal.archives-ouvertes.fr/hal-00351911

S. Skakun, N. Kussul, A. Shelestov, M. Lavreniuk, and O. Kussul, Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine, IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, vol.9, issue.8, pp.3712-3719, 2016.

N. Kussul, S. Skakun, A. Shelestov, M. Lavreniuk, B. Yailymov et al., Regional scale crop mapping using multi-temporal satellite imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015.

A. Kolotii, N. Kussul, A. Shelestov, S. Skakun, B. Yailymov et al., Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. International Archives of the, 2015.

N. Kussul, G. Lemoine, F. Gallego, S. Skakun, M. Lavreniuk et al., Parcel-based crop classification in Ukraine using Landsat-8 data and sentinel-1A data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.6, 2016.

R. Touzi, Review of speckle filtering in the context of estimation theory, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.11, pp.2392-2404, 2002.

S. Anfinsen, A. Doulgeris, and T. Eltoft, Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.47, issue.11, pp.3795-3809, 2009.

V. Lukin, N. Ponomarenko, S. Abramov, B. Vozel, K. Chehdi et al., Filtering of radar images based on blind evaluation of noise characteristics, Proceedings of Image and Signal Processing for Remote Sensing XIV (SPIE RS'08), p.12, 2008.

X. Kang, C. Han, Y. Yang, and T. Tao, SAR image edge detection by ratio-based Harris method, Proceedings of the International Conference of Acoustics, Speech and Signal Processing, pp.14-19, 2006.

. Toulouse and . Ieee, , pp.837-840, 2006.

R. Marques, F. Medeiros, and D. Ushizima, Target detection in SAR images based on a level set approach, IEEE Transactions on Systems, Man and Cybernetics, vol.39, issue.2, pp.214-222, 2009.

V. Lukin, N. Ponomarenko, D. Fevralev, B. Vozel, K. Chehdi et al., Classification of pre-filtered multichannel remote sensing images, Remote Sensing-Advanced Techniques and Platforms, pp.75-98, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00802993

S. Abramov, V. Abramova, V. Lukin, N. Ponomarenko, B. Vozel et al., Methods for blind estimation of speckle variance in SAR images: Simulation results and verification for real-life data, Computational and Numerical Simulations. Austria: InTech, pp.303-327, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01109213

R. Kozhemiakin, V. Lukin, B. Vozel, and K. Chehdi, Filtering of dual-polarization radar images based on discrete cosine transform, Proceedings of 15th international radar symposium (IRS'14), vol.16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01111032

C. A. Deledalle, L. Denis, G. Poggi, F. Tupin, and L. Verdoliva, Exploiting patch similarity for SAR image processing: The nonlocal paradigm. IEEE Signal Processing Magazine, Recent Advances in Synthetic Aperture Radar Imaging, vol.31, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-00957334

V. Lukin, S. Abramov, N. Ponomarenko, M. Uss, M. Zriakhov et al., Methods and automatic procedures for processing images based on blind evaluation of noise type and characteristics, SPIE Journal on Advances in Remote Sensing, vol.5, issue.1, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00946992

N. Ponomarenko, V. Lukin, K. Egiazarian, and J. Astola, A Method for blind estimation of spatially correlated noise characteristics, Proceedings of SPIE Conference Image Processing: Algorithms and Systems VII (SPIE EI'10), vol.8, p.12, 2010.

M. Colom, A. Buades, and J. M. Morel, Nonparametric noise estimation method for raw images, Journal of the Optical Society of America, vol.31, issue.4, pp.863-871, 2014.

M. Uss, B. Vozel, V. Lukin, and K. Chehdi, Maximum likelihood estimation of spatially correlated signal-dependent noise in hyperspectral images, Optical Engineering, vol.51, issue.11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00802995

M. Makitalo, A. Foi, D. Fevralev, and V. Lukin, Denoising of single-look SAR images based on variance stabilization and non-local filters, Proceedings of International Conference of Mathematical Methods in Electromagnetic Theory (MMET'10, pp.6-8, 2010.

V. Lukin, V. Melnik, A. Pogrebniak, A. Zelensky, K. Saarinen et al., Digital adaptive robust algorithms for radar image filtering, Journal of Electronic Imaging, vol.5, issue.3, pp.410-421, 1996.

D. Fevralev, V. Lukin, N. Ponomarenko, S. Abramov, K. Egiazarian et al., Efficiency analysis of color image filtering, EURASIP Journal on Advances in Signal Processing, 2011.

C. A. Deledalle, L. Denis, S. Tabti, F. Tupin, and . Mulog, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?, IEEE Transactions on Image Processing. Forthcoming
URL : https://hal.archives-ouvertes.fr/hal-01388858

A. Rubel, V. Lukin, and K. Egiazarian, Block matching and 3D collaborative filtering adapted to additive spatially correlated noise, Proceedings of 9th International Workshop on Video Processing and Quality Metrics (VPQM'2015), p.6, 2015.

O. Pogrebnyak and V. Lukin, Wiener DCT based image filtering, Journal of Electronic Imaging, vol.4, 2012.

R. Oktem, K. Egiazarian, V. Lukin, N. Ponomarenko, and O. Tsymbal, Locally adaptive DCT filtering for signal-dependent noise removal, EURASIP Journal on Advances in Signal Processing, 2007.

O. Tsymbal, V. Lukin, N. Ponomarenko, A. Zelensky, K. Egiazarian et al., Three-state locally adaptive texture preserving filter for radar and optical image processing, EURASIP Journal on Applied Signal Processing, issue.8, pp.1185-1204, 2005.

S. Abramov, S. Krivenko, A. Roenko, V. Lukin, I. Djurovic et al., Prediction of filtering efficiency for DCT-based image denoising, Proceedings of 2nd Mediterranean Conference on Embedded Computing (MECO'2013, pp.97-100, 2013.

O. Rubel, R. Kozhemiakin, S. Abramov, V. Lukin, B. Vozel et al., Performance prediction for 3D filtering of multichannel images, Proceedings of SPIE: Image and Signal Processing for Remote Sensing XXI (SPIE RS'15), vol.15, p.11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01300961

O. Rubel, V. Lukin, and F. S. De-medeiros, Prediction of despeckling efficiency of DCT-based filters applied to SAR images, Proceedings of International Conference on Distributed Computing in Sensor Systems (DCOSS'15), pp.159-168, 2015.

, Despeckling of Multitemporal Sentinel SAR Images and Its Impact on Agricultural Area Classification

F. J. Huang and Y. Lecun, Large-scale learning with SVM and convolutional NETWORK for generic object recognition, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06, pp.284-291, 2006.

J. Ding, B. Chen, H. Liu, and M. Huang, Convolutional neural network with data augmentation for SAR target recognition, IEEE Geoscience and Remote Sensing Letters, vol.13, issue.3, pp.364-368, 2016.

N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, vol.14, 2017.

A. Shelestov, M. Lavreniuk, N. Kussul, A. Novikov, and S. Skakun, Exploring Google earth engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping, Frontiers in Earth Science, vol.5, issue.17, 2017.

F. Waldner, D. De-abelleyra, S. Veron, M. Zhang, B. Wu et al., Towards a set of agrosystemspecific cropland mapping methods to address the global cropland diversity, International Journal of Remote Sensing, vol.37, issue.14, pp.3196-3231, 2016.

M. Lavreniuk, N. Kussul, S. Skakun, A. Shelestov, and B. Yailymov, Regional retrospective high resolution land cover for Ukraine: Methodology and results, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS'15, pp.26-31, 2015.

. Milan and . Ieee, , pp.3965-3968, 2015.

C. Bishop, Pattern Recognition and Machine Learning

M. Lavreniuk, S. Skakun, A. Shelestov, B. Yalimov, S. Yanchevskii et al., Large-scale classification of land cover using retrospective satellite data, Cybernetics and Systems Analysis, vol.52, issue.1, pp.127-138, 2016.

N. Kussul, S. Skakun, A. Shelestov, and O. Kussul, The use of satellite SAR imagery to crop classification in Ukraine within JECAM project, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS'14), vol.13, 2014.

R. Congalton, A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, vol.37, p.90048, 1991.