C. R. Pike, A. P. Roberts, and K. L. Verosub, Characterizing Interactions in Fine Magnetic Particle Systems Using First Order Reversal Curves, J. Appl. Phys, p.6660, 1999.

A. Stancu, D. Ricinschi, L. Mitoseriu, P. Postolache, and M. Okuyama, First-Order Reversal Curves Diagrams for the Characterization of Ferroelectric Switching, Appl Phys Lett, vol.83, pp.3767-3769, 2003.

C. R. Pike, A. P. Roberts, and K. L. Verosub, First-Order Reversal Curve Diagrams and Thermal Relaxation Effects in Magnetic Particles, Geophys. J. Int, p.721, 2001.

C. Enachescu, R. Tanasa, A. Stancu, E. Codjovi, J. Linares et al., Forc Method Applied to the Thermal Hysteresis of Spin Transition Solids: First Approach of Static and Kinetic Properties, Physica B, vol.343, pp.15-19, 2004.

R. Tanasa, C. Enachescu, A. Stancu, J. Linares, E. Codjovi et al., First-Order Reversal Curve Analysis of Spin-Transition Thermal Hysteresis in Terms of Physical-Parameter Distributions and Their Correlations, Phys. Rev. B, p.14431, 2005.

C. Enachescu, R. Tanasa, A. Stancu, F. Varret, J. Linares et al., FirstOrder Reversal Curves Analysis of Rate-Dependent Hysteresis: The Example of LightInduced Thermal Hysteresis in a Spin-Crossover Solid, Phys. Rev. B, p.54413, 2005.

A. Rotaru, J. Linares, F. Varret, E. Codjovi, A. Slimani et al., Pressure Effect Investigated with First-Order ReversalCurve Method on the Spin-Transition Compounds

, Phys. Rev. B, p.224107, 2011.

M. A. Halcrow, Spin-Crossover Materials -Properties and Applications, 2013.

P. Gütlich and A. Goodwin, Spin Crossover in Transition Metal Compounds Springer, 2004.

W. Nicolazzi and A. Bousseksou, Thermodynamical Aspects of the Spin Crossover Phenomenon, C. R. Chim, vol.21, pp.1060-1075, 2018.

K. Boukheddaden, M. H. Ritti, G. Bouchez, M. Sy, M. M. Dirtu et al., Towards Spin Crossover Applications, Top Curr Chem, vol.235, pp.221-249, 2004.

S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, and H. Tokoro, Light-Induced Spin-Crossover Magnet, Nat. Chem, vol.3, pp.564-569, 2011.

C. Enachescu, H. C. Machado, N. Menendez, E. Codjovi, J. Linares et al., Static and Light Induced Hysteresis in Spin-Crossover Compounds:Experimental Data and Application of Preisach-Type Models, Physica B, p.155, 2001.

S. Pillet, J. Hubsch, and C. Lecomte, Single Crystal Diffraction Analysis of the

, Thermal Spin Conversion in [Fe(btr) 2 (NCS) 2 ] (H 2 O): Evidence for Spin-Like Domain Formation, Eur. Phys. J. B, vol.38, pp.541-552, 2004.

G. Molnár, A. Bousseksou, A. Zwick, and J. J. Mcgarvey, The Spin-Crossover Phenomenon in the Solid State: Do Domains Play a Role? A Micro-Raman Study, Chem . Phys. Lett, vol.367, pp.593-598, 2003.

S. Bonnet, G. Molnar, J. Sanchez-costa, A. M. Siegler, and A. L. Spek,

A. Bousseksou, W. T. Fu, P. Gamez, and J. Reedijk, Influence of Sample Preparation, Nanoscale in Spin-Crossover Materials with a First-Order Phase Transition. Phys. Rev

. Lett, , p.235701, 2013.

Y. Raza, Matrix-Dependent Cooperativity in Spin Crossover

F. , Pyrazine)Pt(Cn)4 Nanoparticles Chem. Commun, vol.47, pp.11501-11503, 2011.

A. Rotaru, F. Varret, A. Gindulescu, J. Linarès, A. Stancu et al.,

T. Forestier and C. Etrillard, Size Effect in Spin-Crossover Systems Investigated by Forc Measurements, for Surfacted [Fe(NH 2 -Trz) 3 ](Br) 2 ·3H 2 O Nanoparticles: Reversible Contributions and Critical Size, Eur. Phys. J. B, vol.84, pp.439-449, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00661477

L. Stoleriu, P. Chakraborty, A. Hauser, A. Stancu, and C. Enachescu, Thermal Hysteresis in Spin-Crossover Compounds Studied within the Mechanoelastic Model and Its Potential Application to Nanoparticles, Phys. Rev. B, p.134102, 2011.

M. Mikolasek, G. Felix, H. Peng, S. Rat, F. Terki et al., Finite-Size Effects on the Lattice Dynamics in Spin Crossover Nanomaterials. I. Nuclear Inelastic Scattering Investigation, Phys Rev B, p.35426, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669917

G. Felix, M. Mikolasek, G. Molnar, W. Nicolazzi, and A. Bousseksou, Tuning the
URL : https://hal.archives-ouvertes.fr/hal-01203688

, Spin Crossover in Nano-Objects: From Hollow to Core-Shell Particles, Chemi. Phys. Lett, vol.607, pp.10-14, 2014.

H. Oubouchou, Y. Singh, and K. Boukheddaden, Magnetoelastic Modeling of CoreShell Spin-Crossover Nanocomposites, Phys. Rev. B, p.98, 2018.

A. Atitoaie, R. Tanasa, A. Stancu, and C. Enachescu, Study of Spin Crossover Nanoparticles Thermal Hysteresis Using FORC Diagrams on an Ising-Like Model

. Magn, . Magn, and . Mater, , vol.368, pp.12-18, 2014.

A. Tissot, C. Enachescu, and M. L. Boillot, Control of the Thermal Hysteresis of the Prototypal Spin-Transition Fe ii (Phen)2(Ncs)2 Compound Via the Microcrystallites Environment: Experiments and Mechanoelastic Model, J. Mater. Chem, vol.22, pp.20451-20457, 2012.

R. Tanasa, J. Laisney, A. Stancu, M. L. Boillot, and C. Enachescu, Hysteretic Behavior of Fe(Phen)(2)(Ncs)(2) Spin-Transition Microparticles Vs. The Environment: A Huge Reversible Component Resolved by First Order Reversal Curves, Appl. Phys. Lett, vol.104, p.31909, 2014.

C. Roux, J. Zarembowitch, J. P. Itie, A. Polian, and M. Verdaguer, Pressure-Induced Spin-State Crossovers in Six-Coordinate Fe(II)L(N)L'(M)(NCS) (2) Complexes with L=L' and L Not Equal L': A XANES Investigation, Inorg Chem, vol.35, pp.574-580, 1996.

R. A. Riggleman and J. J. De-pablo, Antiplasticization and Local Elastic Constants in Trehalose and Glycerol Mixtures, Journal of Chemical Physics, vol.128, p.224504, 2008.

M. D. Ediger, C. A. Angell, and S. R. Nagel, Supercooled Liquids and Glasses

. Phys and . Chem, , vol.100, pp.13200-13212, 1996.

J. F. Willart, E. Dudognon, A. Mahieu, M. Eddleston, W. Jones et al., The Role of Cracks in the Crystal Nucleation Process of Amorphous Griseofulvin, Eur. Phys. J.-Special Topics, vol.226, pp.837-847, 2017.

D. Mayergoyz, Mathematical Models of Hysteresis, 1991.

A. Stancu, C. R. Pike, L. Stoleriu, P. Postolache, and D. Cimpoesu, Micromagnetic and Preisach Analysis of the First Order Reversal Curves (FORC) Diagram, J. Appl. Phys, vol.93, pp.6620-6622, 2003.

L. L. Nguyen, R. Guillot, J. Laisney, L. Rechignat, S. Bedoui et al.,

E. Rivière, M. L. Boillot, and . Fe, Me 2 -bpy) 2 (NCSe) 2 Spin-Crossover Micro-and Nanoparticles Showing Spin-State Switching above 250 K New, J. Chem, vol.39, pp.1603-1610, 2015.

L. Stoleriu and C. Enachescu, Elastic Model for Spin Crossover Nanoparticles in Matrices Proc, Ro. Acad. Series A, vol.20, pp.59-66, 2019.

K. Yokogawa, K. Murata, H. Yoshino, and S. Aoyama, Solidification of HighPressure Medium Daphne 7373, Jpn J. Appl. Phys, vol.46, pp.3636-3639, 2007.

I. Abou-hamad, D. T. Robb, and P. A. Rikvold, New Cyclic Voltammetry Method for

, Examining Phase Transitions: Simulated Results, Journal of Electroanalytical Chemistry, vol.607, pp.61-68, 2007.

M. Y. Chen, X. R. Chen, W. H. Ning, and X. M. Ren, A Facile Route for Preparation of Monodisperse Nanoparticles of One-Dimensional Fe(II)-4-Amino-1,2,4-Triazole Coordination Polymers with Hysteretic Spin-Crossover near Room Temperature, vol.4, pp.39126-39131, 2014.

F. Forcs-for, (NCS)2 microparticles embedded in nujol. (a) Main figure: heating mode (Tup=190 K), inset: cooling mode (Tdown = 140 K). (b) FORC distributions for heating (lower side) and cooling modes