L. Nakhleh, Computational approaches to species phylogeny inference and gene tree reconciliation, Trends Ecol. Evol, vol.28, pp.719-728, 2013.

P. Pamilo and M. Nei, Relationships between gene trees and species trees, Mol. Biol. Evol, vol.5, pp.568-583, 1988.

N. Bernhardt, J. Brassac, B. Kilian, and F. R. Blattner, Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae, BMC Evol. Biol, vol.17, p.141, 2017.

J. S. Escobar, C. Scornavacca, A. Cenci, C. Guilhaumon, S. Santoni et al., Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae), BMC Evol. Biol, vol.11, p.181, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01499047

L. Li, B. Liu, K. M. Olsen, and J. F. Wendel, A re-evaluation of the homoploid hybrid origin of Aegilops tauschii, the donor of the wheat D-subgenome, New Phytol, vol.208, pp.4-8, 2015.

S. Huang, A. Sirikhachornkit, X. Su, J. Faris, B. Gill et al., Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/ Aegilops complex and the evolutionary history of polyploid wheat, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.8133-8138, 2002.

T. Marcussen, S. R. Sandve, L. Heier, M. Spannagl, and M. Pfeifer, Ancient hybridizations among the ancestral genomes of bread wheat, Science, vol.345, p.1250092, 2014.

J. Dvor?ák, M. Luo, and Z. Yang, Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species, Genetics, vol.148, pp.423-434, 1998.

K. Yamane and T. Kawahara, Intra-and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences, Am. J. Bot, vol.92, pp.1887-1898, 2005.

G. Petersen, O. Seberg, M. Yde, and K. Berthelsen, Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum), Mol. Phylogenet. Evol, vol.39, pp.70-82, 2006.

L. Li, B. Liu, K. M. Olsen, and J. F. Wendel, Multiple rounds of ancient and recent hybridizations have occurred within the Aegilops-Triticum complex, New Phytol, vol.208, pp.11-12, 2015.

M. E. Baidouri, F. Murat, M. Veyssiere, M. Molinier, R. Flores et al., Reconciling the evolutionary origin of bread wheat (Triticum aestivum), New Phytol, vol.213, pp.1477-1486, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01361976

V. Ranwez, A. Criscuolo, and E. J. Douzery, SuperTriplets: A triplet-based supertree approach to phylogenomics, Bioinformatics, vol.26, pp.115-123, 2010.

A. Stamatakis, RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

C. Solís-lemus, P. Bastide, and C. Ané, PhyloNetworks: A package for phylogenetic networks, Mol. Biol. Evol, vol.34, pp.3292-3298, 2017.

C. Meng and L. S. Kubatko, Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: A model. Theor, Popul. Biol, vol.75, pp.35-45, 2009.

P. D. Blischak, J. Chifman, A. D. Wolfe, and L. S. Kubatko, HyDe: A Python package for genome-scale hybridization detection, Syst. Biol, vol.67, pp.821-829, 2018.

S. R. Sandve, T. Marcussen, K. Mayer, K. S. Jakobsen, L. Heier et al., Chloroplast phylogeny of Triticum/Aegilops species is not incongruent with an ancient homoploid hybrid origin of the ancestor of the bread wheat D-genome, New Phytol, vol.208, pp.9-10, 2015.

M. C. Ungerer, S. J. Baird, J. Pan, and L. H. Rieseberg, Rapid hybrid speciation in wild sunflowers, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.11757-11762, 1998.

C. A. Buerkle and L. H. Rieseberg, The rate of genome stabilization in homoploid hybrid species, Evolution, vol.62, pp.266-275, 2008.

P. Gornicki, H. Zhu, J. Wang, G. S. Challa, Z. Zhang et al., The chloroplast view of the evolution of polyploid wheat, New Phytol, vol.204, pp.704-714, 2014.

T. V. Danilova, A. R. Akhunova, E. D. Akhunov, B. Friebe, and B. S. Gill, Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii

, Plant J, vol.92, pp.317-330, 2017.

P. Y. Novikova, N. Hohmann, V. Nizhynska, T. Tsuchimatsu, J. Ali et al., Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism, Nat. Genet, vol.48, pp.1077-1082, 2016.

J. B. Pease, D. C. Haak, M. W. Hahn, and L. C. Moyle, Phylogenomics reveals three sources of adaptive variation during a rapid radiation, PLOS Biol, vol.14, p.1002379, 2016.

J. B. Pease and M. W. Hahn, Detection and polarization of introgression in a five-taxon phylogeny, Syst. Biol, vol.64, pp.651-662, 2015.

E. Y. Durand, N. Patterson, D. Reich, and M. Slatkin, Testing for ancient admixture between closely related populations, Mol. Biol. Evol, vol.28, pp.2239-2252, 2011.

V. Ranwez and O. Gascuel, Quartet-based phylogenetic inference: Improvements and limits, Mol. Biol. Evol, vol.18, pp.1103-1116, 2001.

E. Sayyari and S. Mirarab, Fast coalescent-based computation of local branch support from quartet frequencies, Mol. Biol. Evol, vol.33, pp.1654-1668, 2016.

E. D. Badaeva, B. Friebe, and B. S. Gill, Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species, Genome, vol.39, pp.293-306, 1996.

G. Sarah, F. Homa, S. Pointet, S. Contreras, F. Sabot et al., A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives, Mol. Ecol. Resour, vol.17, pp.565-580, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930391

Y. Clément, G. Sarah, Y. Holtz, F. Homa, S. Pointet et al., Evolutionary forces affecting synonymous variations in plant genomes, PLOS Genet, vol.13, p.1006799, 2017.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J, vol.17, pp.10-12, 2011.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones et al., ABySS: A parallel assembler for short read sequence data, Genome Res, vol.19, pp.1117-1123, 2009.

X. Huang and A. Madan, CAP3: A DNA sequence assembly program, Genome Res, vol.9, pp.868-877, 1999.

Y. Ye, J. Choi, and H. Tang, RAPSearch: A fast protein similarity search tool for short reads, BMC Bioinformatics, vol.12, p.159, 2011.

J. D. Wasmuth and M. L. Blaxter, Translating expressed sequence tags from neglected genomes, BMC Bioinformatics, vol.4, p.187, 2004.

E. J. Douzery, C. Scornavacca, J. Romiguier, K. Belkhir, N. Galtier et al., OrthoMaM v8: A database of orthologous exons and coding sequences for comparative genomics in mammals, Mol. Biol. Evol, vol.31, pp.1923-1928, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02154956

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, pp.2460-2461, 2010.

R. C. Edgar, MUSCLE: A multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, p.113, 2004.

V. Ranwez, S. Harispe, F. Delsuc, and E. J. Douzery, MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons, PLOS ONE, vol.6, p.22594, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01773250

H. Philippe, D. M. De-vienne, V. Ranwez, B. Roure, D. Baurain et al., Pitfalls in supermatrix phylogenomics, Eur. J. Taxon, vol.283, pp.1-25, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606389

L. Gueguen, S. Gaillard, B. Boussau, M. Gouy, M. Groussin et al., Bio++: Efficient extensible libraries and tools for computational molecular evolution, Mol. Biol. Evol, vol.30, pp.1745-1750, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209906

J. Dutheil, S. Gaillard, E. Bazin, S. Glémin, V. Ranwez et al., Bio++: A set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics, BMC Bioinformatics, vol.7, p.188, 2006.
URL : https://hal.archives-ouvertes.fr/halsde-00323971

C. Scornavacca, V. Berry, and V. Ranwez, Building species trees from larger parts of phylogenomic databases, Inf. Comput, vol.209, pp.590-605, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00825050

E. Paradis, J. Claude, and K. Strimmer, APE: Analyses of Phylogenetics and Evolution in R language, Bioinformatics, vol.20, pp.289-290, 2004.
URL : https://hal.archives-ouvertes.fr/ird-01887318

R. R. Bouckaert and J. Heled, DensiTree 2: Seeing trees through the forest, 2014.

L. S. Kubatko and J. Chifman, An invariants-based method for efficient identification of hybrid species from large-scale genomic data, 2015.

D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms and Applications, 2010.

S. Zhu and J. H. Degnan, Displayed trees do not determine distinguishability under the network multispecies coalescent, Syst. Biol, vol.66, pp.283-298, 2017.

J. Dav, S. G. , V. R. , M. A. , and S. S. , funding acquisition: J. Dav. and S.G.; biological data acquisition and management: C.B. and V.V.; sequence data acquisition, Acknowledgments: Analyses were performed on the computing cluster of the Montpellier Bioinformatics Biodiversity (MBB) platform, the South Green Bioinformatics platform, and the UPPMAX platform in Uppsala. Funding: This work was supported by the French National Research Agency

S. Glémin, C. Scornavacca, J. Dainat, C. Burgarella, V. Viader et al., Pervasive hybridizations in the history of wheat relatives, Sci. Adv, vol.5, p.9188, 2019.

S. Sarah, J. Santoni, . David, C. Vincent-ranwez-sylvain-glémin, J. Scornavacca et al., , p.9188

, Sci Adv REFERENCES

, This article cites 46 articles, 7 of which you can access for free