K. D. Mjos and C. Orvig, Metallodrugs in Medicinal Inorganic Chemistry, Chem. Rev, vol.114, pp.4540-4563, 2014.

B. Rosenberg, Cisplatin: Its History and Possible Mechanisms of Action, vol.9, p.20, 1980.

J. Gailer, Improving the safety of metal-based drugs by tuning their metabolism with chemoprotective agents, J. Inorg. Biochem, vol.179, pp.154-157, 2018.

M. Hanif and C. G. Hartinger, Anticancer metallodrugs: where is the next cisplatin, Future Med. Chem, vol.10, pp.615-617, 2018.

K. Cheung-ong, G. Giaever, C. Nislow, and . Dna?, Damaging Agents in Cancer Chemotherapy: Serendipity and Chemical Biology. Chem. Biol, vol.20, pp.648-659, 2013.

T. Hermann and E. Westhof, RNA as a drug target: chemical, modelling, and evolutionary tools, Curr. Opin. Biotechnol, vol.9, pp.66-73, 1998.

Y. V. Suseela, N. Narayanaswamy, S. Pratihar, and T. Govindaraju, Far-red fluorescent probes for canonical and noncanonical nucleic acid structures: current progress and future implications, Chem. Soc. Rev, vol.47, pp.1098-1131, 2018.

A. G. Petrovic and P. L. Polavarapu, Structural Transitions in Polyriboadenylic Acid Induced by the Changes in pH and Temperature: Vibrational Circular Dichroism Study in Solution and Film States, J. Phys. Chem. B, vol.109, 2005.

T. Hermann, Strategies for the design of drugs targeting RNA and RNA?protein complexes, Angew. Chem., Int. Ed, 1890.

S. Geisler and J. Coller, RNA in unexpected places: long non? coding RNA functions in diverse cellular contexts, Nat. Rev. Mol. Cell Biol, vol.14, pp.699-712, 2013.

C. S. Chow and F. M. Bogdan, A Structural Basis for RNA?Ligand Interactions, Chem. Rev, vol.97, pp.1489-1513, 1997.

K. D. Warner, C. E. Hajdin, and K. M. Weeks, Principles for targeting RNA with drug-like small molecules, Nat. Rev. Drug Discovery, vol.17, pp.547-558, 2018.

J. R. Thomas and P. J. Hergenrother, Targeting RNA with small molecules, Chem. Rev, vol.108, pp.1171-1224, 2008.

F. Aboul-ela, Strategies for the design of RNA?binding small molecules, Future Med. Chem, vol.2, pp.93-119, 2010.

L. Guan and M. D. Disney, Recent advances in developing small molecules targeting RNA, ACS Chem. Biol, vol.7, pp.73-86, 2012.

A. J. Wagner, D. Y. Zubarev, A. Aspuru-guzik, and D. G. Blackmond, Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis, ACS Cent. Sci, vol.3, pp.322-328, 2017.

J. Mcconathy and M. J. Owens, Stereochemistry in Drug Action, Prim. Care Companion J. Clin. Psychiatry, vol.5, pp.70-73, 2003.

M. N. Cayen, Racemic mixtures and single stereoisomers: Industrial concerns and issues in drug development, Chirality, vol.3, pp.94-98, 1991.

M. A. Malik, O. A. Dar, P. Gull, M. Y. Wani, and A. A. Hashmi,

, Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy, MedChemComm, vol.9, pp.409-436, 2018.

X. Qiao, Z. Ma, C. Xie, F. Xue, Y. Zhang et al., Study on potential antitumor mechanism of a novel Schiff Base copper(II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity, J. Inorg. Biochem, pp.105-728, 2011.

S. Ren, R. Wang, K. Komatsu, P. B. Krause, Y. Zyrianov et al., Biological Evaluation, and Quantitative Structure-Activity Relationship Analysis of New Schiff Bases of Hydroxysemicarbazide as Potential Antitumor Agents, J. Med. Chem, vol.45, pp.410-419, 2002.

M. Chauhan, K. Banerjee, and F. Arjmand, DNA Binding Studies of Novel Copper(II) Complexes Containing L?Tryptophan as Chiral Auxiliary: In Vitro Antitumor Activity of Cu?Sn 2 Complex in Human Neuroblastoma Cells, Inorg. Chem, vol.46, pp.3072-3082, 2007.

G. Kumaravel, P. P. Utthra, and N. Raman, Exploiting the biological efficacy of benzimidazole based Schiff base complexes with L-Histidine as a co-ligand: Combined molecular docking, DNA interaction, antimicrobial and cytotoxic studies, Bioorg. Chem, vol.77, pp.269-279, 2018.

I. Yousuf, F. Arjmand, S. Tabassum, L. Toupet, R. A. Khan et al., Mechanistic insights into a novel chromone appended Cu(II) anticancer drug entity: in vitro binding profile with DNA/ RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells, Dalton Trans, vol.44, pp.10330-10342, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168331

F. Arjmand, A. Jamsheera, M. Afzal, and S. Tabassum,

, Enantiomeric Specificity of Biologically Significant Cu(II) and Zn(II) Chromone Complexes Towards DNA, Chirality, vol.24, pp.977-986, 2012.

M. A. Neelakantan, K. Balamurugan, C. Balakrishnan, and L. Subha, Interaction of Amino Acid Schiff Base Metal Complexes with DNA/BSA Protein and Antibacterial Activity: Spectral Studies, DFT Calculations and Molecular Docking Simulations, Appl. Organomet. Chem, vol.32, issue.e4259, 2018.

A. Colak, U. Terzi, M. Col, S. A. Karaoglu, S. Karabocek et al., DNA binding, antioxidant and antimicrobial activities of homo-and heteronuclear copper(II) and nickel(II) complexes with new oxime-type ligands, Eur. J. Med. Chem, pp.5169-5175, 2010.

M. L. Turski and D. J. Thiele, New Roles for Copper Metabolism in Cell Proliferation, Signaling, and Disease, J. Biol. Chem, vol.284, pp.717-721, 2009.

X. Shi, Z. Chen, Y. Wang, Z. Guo, and X. Wang, Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells, Dalton Trans, vol.47, pp.5049-5054, 2018.

C. Marzano, M. Pellei, F. Tisato, and C. Santini, Copper Complexes as Anticancer Agents. Anti-Cancer Agents Med. Chem, vol.9, pp.185-211, 2009.

D. Denoyer, S. Masaldan, S. L. Fontaine, and M. A. Cater, Targeting copper in cancer therapy: 'Copper That Cancer, vol.7, pp.1459-1476, 2015.

S. Tardito, I. Bassanetti, C. Bignardi, L. Elviri, M. Tegoni et al., Copper Binding Agents Acting as Copper Ionophores Lead to Caspase Inhibition and Paraptotic Cell Death in Human Cancer Cells, J. Am. Chem. Soc, vol.133, pp.6235-6242, 2011.

J. Zuo, C. Bi, Y. Fan, D. Buac, C. Nardon et al., Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base?copper complexes, J. Inorg. Biochem, vol.118, pp.83-93, 2013.

C. H. Ng, S. M. Kong, Y. L. Tiong, M. J. Maah, N. Sukram et al., Selective anticancer copper(II)-mixed ligand complexes: targeting of ROS and proteasomes, Metallomics, vol.6, pp.892-906, 2014.

Z. C. Liu, B. D. Wang, B. Li, Q. Wang, Z. Y. Yang et al., Crystal structures, DNA-binding and cytotoxic activities studies of Cu(II) complexes with 2-oxoquinoline-3-carbaldehyde Schiff-bases, Eur. J. Med. Chem, pp.45-5353, 2010.

K. A. Meadows, F. Liu, J. Sou, B. P. Hudson, and D. R. Mcmillin, Spectroscopic and Photophysical Studies of the Binding Interactions between Copper Phenanthroline Complexes and RNA, Inorg. Chem, vol.32, pp.2919-2923, 1993.

P. R. Reddy, A. Shilpa, N. Raju, and P. Raghavaiah, Synthesis, structure, DNA binding and cleavage properties of ternary amino acid Schiff base?phen/bipy Cu(II) complexes, J. Inorg. Biochem, pp.105-1603, 2011.

A. Barve, A. Kumbhar, M. Bhat, B. Joshi, R. Butcher et al., Mixed-Ligand Copper(II) Maltolate Complexes: Synthesis, Characterization, DNA Binding and Cleavage, and Cytotoxicity, Inorg. Chem, vol.48, pp.9120-9132, 2009.

C. Yang, M. Vetrichelvan, X. Yang, B. Moubaraki, K. S. Murray et al., Syntheses, structural properties and catecholase activity of copper(II) complexes with reduced Schiff base N? (2-hydroxybenzyl)-amino acids, Dalton Trans, pp.113-121, 2004.

S. Ramakrishnan, V. Rajendiran, M. Palaniandavar, V. S. Periasamy, B. S. Srinag et al., Induction of Cell Death by Ternary Copper(II) Complexes of L-Tyrosine and Diimines: Role of Coligands on DNA Binding and Cleavage and Anticancer Activity, Inorg. Chem, vol.48, pp.1309-1322, 2009.

X. Zhou, Q. Sun, L. Jiang, S. T. Li, W. Gu et al., Synthesis, characterization, DNA/BSA interactions and anticancer activity of achiral and chiral copper complexes, Dalton Trans, vol.44, pp.9516-9527, 2015.

A. W. Addison, T. N. Rao, J. Reedijk, J. Rijn, and G. C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen?sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2?-yl)-2,6-dithiaheptane]copper(II) perchlorate, J. Chem. Soc, vol.0, pp.1349-1356, 1984.

X. Zhou, Y. Li, D. Zhang, Y. Nie, Z. Li et al., Copper complexes based on chiral Schiffbase ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis, Eur. J. Med. Chem, vol.114, pp.244-256, 2016.

H. Zhang, W. Wang, H. Chen, S. Zhang, and Y. Li, Five novel dinuclear copper(II) complexes: Crystal structures, properties, Hirshfeld surface analysis and vitro antitumor activity study, Inorg. Chim. Acta, vol.453, pp.507-515, 2016.

A. Erxleben, Interactions of copper complexes with nucleic acids, Coord. Chem. Rev, vol.360, pp.92-121, 2018.

M. Alagesan, N. S. Bhuvanesh, and N. Dharmaraj, Potentially cytotoxic new copper(II) hydrazone complexes: synthesis, crystal structure and biological properties, Dalton Trans, vol.42, pp.7210-7223, 2013.

K. N. Aneesrahman, G. Rohini, N. S. Bhuvanesh, S. Sundararaj, M. Musthafa et al., In Vitro Biomolecular Interaction Studies and Cytotoxic Activities of Newly Synthesised Copper(II) Complexes Bearing 2-Hydroxynaphthaldehyde-Based Thiosemicarbazone, vol.3, pp.8118-8130, 2018.

M. K. Koley, S. U. Parsekar, N. Duraipandy, M. S. Kiran, B. Varghese et al., DNA binding and cytotoxicity of two Cu(II) complexes containing a Schiff base ligand along with 1,10-phenanthroline or imidazole as a coligand, Inorg. Chim. Acta, vol.478, pp.211-221, 2018.

X. Liang, X. Zou, L. Tan, and W. Zhu, Study on nucleic acid (CT-DNA and yeast tRNA) binding behaviors and cytotoxic properties of a heterodinuclear Ru(II)?Co(III) polypyridyl complex, J. Inorg. Biochem, vol.104, pp.1259-1266, 2010.

J. Hormann, J. Malina, O. Lemke, M. J. Hulsey, S. Wedepohl et al., Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA, Synthesis Inhibitors. Inorg. Chem, vol.57, pp.5004-5012, 2018.

X. Zhao, M. Han, A. Zhang, and K. Wang, DNA-and RNA binding and enhanced DNA-photocleavage properties of a ferrocenyl-containing ruthenium(II) complex, J. Inorg. Biochem, vol.107, pp.104-110, 2012.

G. Facchin, E. Kremer, D. A. Barrio, S. B. Etcheverry, A. J. Costa-filho et al., Interaction of Cu-dipeptide complexes with Calf Thymus DNA and antiproliferative activity of [Cu(ala-phe)] in osteosarcoma-derived cells, Polyhedron, vol.28, pp.2329-2334, 2009.

M. Chikira, DNA-fiber EPR spectroscopy as a tool to study DNA-metal complex interactions: DNA binding of hydrated Cu(II) ions and Cu(II) complexes of amino acids and peptides, J. Inorg. Biochem, vol.102, pp.1016-1024, 2008.

M. Chikira, M. Inoue, R. Nagane, W. Harada, and H. Shindo, How amino acids control the binding of Cu(II) ions to DNA (II): Effect of basic amino acid residues and the chirality on the orientation of the complexes, J. Inorg. Biochem, vol.66, pp.131-139, 1997.

R. Nagane, M. Chikira, M. Oumi, H. Shindo, and W. Antholine,

E. , How amino acids control the binding of Cu(II) ions to DNA Part III. A novel interaction of a histidine complex with DNA, J. Inorg. Biochem, vol.78, pp.243-249, 2000.

J. Malina, N. P. Farrell, and V. Brabec, Substitution-Inert Trinuclear Platinum Complexes Efficiently Condense/Aggregate Nucleic Acids and Inhibit Enzymatic Activity, Angew. Chem., Int. Ed, vol.53, pp.12812-12816, 2014.

M. F. Pinto, M. C. Moran, M. G. Miguel, B. Lindman, A. S. Jurado et al., A. C. C. Controlling the Morphology in DNA Condensation and Precipitation, Biomacromolecules, vol.10, pp.1319-1323, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00302581

I. Toshio, K. Satoru, S. Takahiro, Y. Kenichi, and S. S. Sergey, Competition between compaction of single chains and bundling of multiple chains in giant DNA molecules, J. Chem. Phys, vol.120, pp.4004-4011, 2004.

O. E. Philippova, T. Akitaya, I. R. Mullagaliev, A. R. Khokhlov, and K. Yoshikawa, Salt-Controlled Intrachain/Interchain Segregation in DNA Complexed with Polycation of Natural Origin. Macromolecules, vol.38, pp.9359-9365, 2005.

P. Pereira, A. F. Jorge, R. Martins, A. A. Pais, F. Sousa et al., Characterization of polyplexes involving small RNA, J. Colloid Interface Sci, vol.387, pp.84-94, 2012.

M. Gonza?ez-a?lvarez, G. Alzuet, J. Borra?, B. Macías, and A. Castin?iras, Oxidative Cleavage of DNA by a New Ferromagnetic Linear Trinuclear Copper(II) Complex in the Presence of H 2 O 2 / Sodium Ascorbate, Inorg. Chem, vol.42, pp.2992-2998, 2003.

Y. Jin and J. A. Cowan, DNA Cleavage by Copper-ATCUN Complexes. Factors Influencing Cleavage Mechanism and Linearization of dsDNA, J. Am. Chem. Soc, vol.127, pp.8408-8415, 2005.

H. Lonnberg, Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight, Org. Biomol. Chem, vol.9, pp.1687-1703, 2011.

F. Arjmand, I. Yousuf, T. B. Hadda, and L. Toupet, Synthesis, crystal structure and antiproliferative activity of Cu(II) nalidixic acid? DACH conjugate: Comparative in vitro DNA/RNA binding profile, cleavage activity and molecular docking studies, Eur. J. Med. Chem, vol.81, pp.76-88, 2014.

D. Mahendiran, S. Amuthakala, N. S. Bhuvanesh, R. S. Kumar, and A. K. Rahiman, Copper complexes as prospective anticancer agents: in vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest, RSC Adv, vol.8, pp.16973-16990, 2018.

C. Zhang, M. Maddelein, R. W. Sun, .. Gornitzka, H. Cuvillier et al., Pharmacomodulation on Gold?NHC complexes for anticancer applications -is lipophilicity the key point?, Eur. J. Med. Chem, vol.157, pp.320-332, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02407036

Y. Gilad and H. Senderowitz, Docking Studies on DNA Intercalators, J. Chem. Inf. Model, vol.54, pp.96-107, 2014.

G. M. Sheldrick, SHELXT ? Integrated space-group and crystal structure determination, Acta Cryst, vol.71, pp.3-8, 2015.

G. M. Sheldrick, Crystal structure refinement with SHELXL

, Acta Crystallogr., Sect. C: Struct. Chem, vol.71, pp.3-8, 2015.

A. L. Spek, M. A. Platon-procedure-;-spackman, and D. Jayatilaka, A Multipurpose Crystallographic Tool, Cryst. Eng. Comm, vol.11, issue.71, pp.19-32, 1998.

F. Arjmand, M. Muddassir, Y. Zaidi, and D. Ray, Design, synthesis and crystal structure determination of dinuclear copper-based potential chemotherapeutic drug entities: in vitro DNA binding, cleavage studies and an evaluation of genotoxicity by micronucleus test and comet assay, MedChemComm, vol.4, pp.394-405, 2013.

J. R. Lakowicz and G. Webber, Quenching of Fluorescence by Oxygen. A Probe for Structural Fluctuations in Macromolecules, Biochemistry, vol.12, pp.4161-4170, 1973.

G. Macindoe, L. Mavridis, V. Venkatraman, M. D. Devignes, and D. W. Ritchie, Hex Server: an FFT-based protein docking server powered by graphics processors, Nucleic Acids Res, vol.38, pp.445-449, 2010.

V. Vichai and K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening, Nat. Protoc, vol.1, pp.1112-1116, 2006.