N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata et al., High Speed Overwritable Phase Change Optical Disk Material, Jpn. J. Appl. Phys, vol.26, pp.61-66, 1987.

L. Wang, C. Yang, J. Wen, and B. Xiong, Amorphization Optimization of Ge 2 Sb 2 Te 5 Media for Electrical Probe Memory Applications, vol.8, p.368, 2018.

A. V. Kolobov, P. Fons, J. Tominaga, A. I. Frenkel, A. L. Ankudinov et al., Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem, Jpn. J. Appl. Phys, vol.44, pp.3345-3349, 2005.

A. V. Kolobov, P. Fons, J. Tominaga, and T. Uruga, Why DVDs work the way they do: The nanometer-scale mechanism of phase change in Ge-Sb-Te alloys, J. Non-Cryst. Solids, vol.352, pp.1612-1615, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00185114

A. V. Kolobov and J. Tominaga, Metastability and Phase Change Phenomena, Chalcogenides, 2012.

P. Nemec, V. Nazabal, A. Moreac, J. Gutwirth, L. Bene? et al., Amorphous and crystallized Ge-Sb-Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy, Mater. Chem. Phys, vol.136, pp.935-941, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00848847

S. Raoux, D. Ielmini, M. Wuttig, and I. Karpov, Phase Change Materials. MRS Bull, vol.37, pp.118-123, 2012.

W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing, Nat. Rev. Mater, vol.4, pp.150-168, 2019.

M. Olivier, P. N?mec, G. Boudebs, R. Boidin, C. Focsa et al., Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films, Opt. Mater. Express, vol.5, p.781, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166153

N. Yamada, Origin, secret, and application of the ideal phase-change material GeSbTe. Phys. Status Solidi, vol.249, pp.1837-1842, 2012.

J. J. Wang, Y. Z. Xu, R. Mazzarello, M. Wuttig, and W. Zhang, A review on disorder-driven metal-insulator transition in crystalline vacancy-rich GeSbTe phase-change materials, Materials, vol.10, 2017.

M. Vl?ek, S. Schroeter, J. ?ech, T. Wágner, and T. Glaser, Selective etching of chalcogenides and its application for fabrication of diffractive optical elements, J. Non-Cryst. Solids, pp.515-518, 2003.

J. Gutwirth, T. Wagner, P. Bezdicka, M. Hrdlicka, M. Vlcek et al., On angle resolved RF magnetron sputtering of GeSbTe thin films, J. Non-Cryst. Solids, vol.355, pp.1935-1938, 2009.

V. Nazabal, F. Charpentier, J. L. Adam, P. Nemec, H. Lhermite et al., Sputtering and pulsed laser deposition for near-and mid-infrared applications: A comparative study of Ge 25 Sb 10 S 65 and Ge 25 Sb 10 Se 65 amorphous thin films, Int. J. Appl. Ceram. Technol, vol.8, pp.990-1000, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00564132

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal et al., Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques, Acta Mater, vol.59, pp.5032-5039, 2011.

J. Lee, S. Choi, C. Lee, Y. Kang, and D. Kim, GeSbTe deposition for the PRAM application, Appl. Surf. Sci, vol.253, pp.3969-3976, 2007.

G. Mussler, A. Ratajczak, M. Von-der-ahe, H. Du, and D. Grützmacher, Metal organic vapor phase epitaxy of Ge 1 Sb 2 Te 4 thin films on Si(111) substrate, Appl. Phys. A, vol.125, pp.1-7, 2019.

I. Hilmi, B. Rauschenbach, J. W. Gerlach, E. Thelander, P. Schumacher et al., Epitaxial Ge 2 Sb 2 Te 5 films on Si(111) prepared by pulsed laser deposition, Thin Solid Films, vol.619, pp.81-85, 2016.

E. Thelander, J. W. Gerlach, U. Ross, A. Lotnyk, and B. Rauschenbach, Low temperature epitaxy of Ge-Sb-Te films on BaF 2 (111) by pulsed laser deposition, Appl. Phys. Lett, vol.105, pp.1-6, 2014.

J. H. Song, T. Susaki, and H. Y. Hwang, Enhanced Thermodynamic Stability of Epitaxial Oxide Thin Films, Adv. Mater, vol.20, pp.2528-2532, 2008.

J. E. Boschker, E. Folven, A. F. Monsen, E. Wahlström, J. K. Grepstad et al., Consequences of high adatom energy during pulsed laser deposition of La 0.7 Sr 0.3 MnO 3 . Cryst. Growth Des, vol.12, pp.562-566, 2012.

C. Mihesan, S. Gurlui, M. Ziskind, B. Chazallon, G. Martinelli et al., Photo-excited desorption of multi-component systems: Application to chalcogenide glasses, Appl. Surf. Sci, vol.248, pp.224-230, 2005.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec et al., Laser ablation of (GeSe 2 ) 100?x (Sb 2 Se 3 ) x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics, Appl. Surf. Sci, vol.418, pp.594-600, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01578541

O. G. Pompilian, S. Gurlui, P. Nemec, V. Nazabal, M. Ziskind et al., Plasma diagnostics in pulsed laser deposition of GaLaS chalcogenides, Appl. Surf. Sci, vol.278, pp.352-356, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00878952

C. Ursu, O. G. Pompilian, S. Gurlui, P. Nica, M. Agop et al., Al 2 O 3 ceramics under high-fluence irradiation: plasma plume dynamics through space-and time-resolved optical emission spectroscopy, Appl. Phys. A, vol.101, pp.153-159, 2010.

O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier et al., Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films, Appl. Phys. A, vol.117, pp.197-205, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018968

G. Dascalu, G. Pompilian, B. Chazallon, O. F. Caltun, S. Gurlui et al., Femtosecond pulsed laser deposition of cobalt ferrite thin films, Appl. Surf. Sci, vol.278, pp.38-42, 2013.

C. Focsa, P. Nemec, M. Ziskind, C. Ursu, S. Gurlui et al., Laser ablation of AsxSe100?x chalcogenide glasses: Plume investigations, Appl. Surf. Sci, vol.255, pp.5307-5311, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411537

G. Dascalu, G. Pompilian, B. Chazallon, V. Nica, O. F. Caltun et al., Rare earth doped cobalt ferrite thin films deposited by PLD, Appl. Phys. A, vol.110, pp.915-922, 2012.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films

P. Nemec, J. P?ikryl, V. Nazabal, and M. Frumar, Optical characteristics of pulsed laser deposited Ge-Sb-Te thin films studied by spectroscopic ellipsometry, J. Appl. Phys, vol.109, issue.073520, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00719552

M. Bou?ka, S. Pechev, Q. Simon, R. Boidin, V. Nazabal et al., Pulsed laser deposited GeTe-rich GeTe-Sb 2 Te 3 thin films, Sci. Rep, 2016.

L. Krusin-elbaum, C. Cabral, K. N. Chen, M. Copel, D. W. Abraham et al., Evidence for segregation of Te in Ge 2 Sb 2 Te 5 films: Effect on the "phase-change, stress. Appl. Phys. Lett, vol.90, 2007.

E. Prokhorov, J. Gonzalez-hernandez, M. A. Hernandez-landaverde, B. Chao, and E. Morales-sanchez, Crystallization mechanism in Sb:Te thin film.pdf, J. Phys. Chem. Solids, vol.68, pp.883-886, 2007.

K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, A. V. Kolobov, M. Ribes et al., Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition, J. Phys. Condens. Matter, vol.18, pp.965-979, 2006.

G. C. Sosso, S. Caravati, and M. Bernasconi, Vibrational properties of crystalline Sb 2 Te 3 from first principles, J. Phys. Condens. Matter, vol.21, p.95410, 2009.

Z. Xu, C. Chen, Z. Wang, K. Wu, H. Chong et al., Optical constants acquisition and phase change properties of Ge 2 Sb 2 Te 5 thin films based on spectroscopy, RSC Adv, vol.8, pp.21040-21046, 2018.

M. Murray, G. Jose, B. Richards, and A. Jha, Femtosecond pulsed laser deposition of silicon thin films, Nanoscale Res. Lett, vol.8, pp.1-6, 2013.

T. Katsuno, C. Godet, J. C. Orlianges, A. S. Loir, F. Garrelie et al., Optical properties of high-density amorphous carbon films grown by nanosecond and femtosecond pulsed laser ablation, Appl. Phys. A, vol.81, pp.471-476, 2005.
URL : https://hal.archives-ouvertes.fr/ujm-00170162

K. K. Anoop, S. S. Harilal, R. Philip, R. Bruzzese, and S. Amoruso, Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma, J. Appl. Phys, vol.120, 2016.

K. K. Anoop, X. Ni, X. Wang, S. Amoruso, and R. Bruzzese, Fast ion generation in femtosecond laser ablation of a metallic target at moderate laser intensity, Laser Phys, vol.24, p.105902, 2014.

S. A. Irimiciuc, S. Gurlui, G. Bulai, P. Nica, M. Agop et al., Langmuir probe investigation of transient plasmas generated by femtosecond laser ablation of several metals: Influence of the target physical properties on the plume dynamics, Appl. Surf. Sci, vol.417, pp.108-118, 2017.

P. Nica, S. Gurlui, M. Osiac, M. Agop, M. Ziskind et al., Investigation of femtosecond laser-produced plasma from various metallic targets using the Langmuir probe characteristic, Phys. Plasmas, vol.24, 2017.

E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, Effect of selenium addition on the GeTe phase change memory alloys, J. Alloys Compd, vol.537, pp.127-132, 2012.

E. M. Vinod, R. Naik, R. Ganesan, and K. S. Sangunni, Signatures of Ge 2 Sb 2 Te 5 film at structural transitions, J. Non-Cryst. Solids, vol.358, pp.2927-2930, 2012.

J. M. Van-eijk, Structural Analysis of Phase-Change Materials Using X-ray Absorption Measurements, 2010.

S. Wei, S. Wu, F. Pei, J. Li, S. Wang et al., Theoretical and Experimental Investigations of the Optical Properties of Ge 2 Sb 2 Te 5 for Multi-State Optical Data Storage, J. Korean Phys. Soc, vol.53, pp.2265-2269, 2008.

A. R. Hilton, Chalcogenide Glasses for Infrared, Optical Materials. Appl. Opt, vol.5, pp.1877-1882, 1966.

R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang et al., Bandgap tuning of multiferroic oxide solar cells, Nat. Photonics, vol.61, pp.61-67, 2014.

P. Nemec, A. Moreac, V. Nazabal, M. Pavli?ta, J. P?ikryl et al., Ge-Sb-Te thin films deposited by pulsed laser An ellipsometry and Raman scattering spectroscopy study, J. Appl. Phys, vol.106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00665512

B. Lee, J. R. Abelson, S. G. Bishop, D. Kang, B. Cheong et al., Investigation of the optical and electronic properties of Ge 2 Sb 2 Te 5 phase change material in its amorphous, cubic, and hexagonal phases, J. Appl. Phys, vol.97, p.93509, 2005.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI