J. Rehm, The risks associated with alcohol use and alcoholism, Alcohol Res Health, vol.34, pp.135-143, 2011.

H. K. Seitz, R. Bataller, and H. Cortez-pinto, Publisher Correction: Alcoholic liver disease, 2018.

A. Louvet and P. Mathurin, Alcoholic liver disease: mechanisms of injury and targeted treatment, 2015.

, a systematic analysis for the Global Burden of Disease Study, Nat Rev Gastroenterol Hepatol, vol.12, issue.18, pp.31310-31312, 2016.

F. Bonnet, E. Disse, and M. Laville, Moderate alcohol consumption is associated with improved 509 insulin sensitivity, reduced basal insulin secretion rate and lower fasting glucagon concentration in 510 healthy women, Diabetologia, vol.55, pp.3228-3237, 2012.

A. Poli, F. Marangoni, and A. Avogaro, Moderate alcohol use and health: a consensus document, 2013.

, Nutr Metab Cardiovasc Dis, vol.23, pp.487-504

V. H. Ajmera, N. A. Terrault, and S. A. Harrison, Goldstein DB, Kakihana R (1977) Circadian rhythms of ethanol consumption by mice: a simple 594 computer analysis for chronopharmacology, Psychopharmacology (Berl), vol.65, pp.41-45, 2017.

P. Jelic, M. F. Shih, and P. V. Taberner, Diurnal variation in plasma ethanol levels of TO and CBA mice on 597 chronic ethanol drinking or ethanol liquid diet schedules, Psychopharmacology (Berl), vol.138, pp.143-150, 1998.

F. Haczeyni, M. M. Yeh, and G. N. Ioannou, Mouse models of non-alcoholic steatohepatitis: A 600 reflection on recent literature, J Gastroenterol Hepatol, vol.33, pp.1312-1320, 2018.

D. J. Livy, S. E. Parnell, and J. R. West, Blood ethanol concentration profiles: a comparison between rats 603 and mice, Alcohol, vol.29, pp.25-34, 2003.

, A collection of therapeutic, toxic and fatal blood drug concentrations in 605 man, Hum Toxicol, vol.2, pp.437-464, 1983.

M. Schulz, S. Iwersen-bergmann, H. Andresen, and A. Schmoldt, Therapeutic and toxic blood 607 concentrations of nearly 1,000 drugs and other xenobiotics, Crit Care, vol.16, 2012.

M. J. Ronis, J. Huang, and J. Crouch, Cytochrome P450 CYP 2E1 induction during chronic alcohol 610 exposure occurs by a two-step mechanism associated with blood alcohol concentrations in rats, J 611 Pharmacol Exp Ther, vol.264, pp.944-950, 1993.

T. M. Badger, J. Huang, M. Ronis, and C. K. Lumpkin, Induction of cytochrome P450 2E1 during chronic 613 ethanol exposure occurs via transcription of the CYP 2E1 gene when blood alcohol concentrations are 614 high, Biochem Biophys Res Commun, vol.190, pp.780-785, 1993.

B. J. Roberts, B. J. Song, and Y. Soh, Ethanol induces CYP2E1 by protein stabilization. Role of 616 ubiquitin conjugation in the rapid degradation of CYP2E1, J Biol Chem, vol.270, pp.29632-29635, 1995.

Y. Wang, H. K. Seitz, and X. Wang, Moderate alcohol consumption aggravates high-fat diet induced 619 steatohepatitis in rats, Alcohol Clin Exp Res, vol.34, pp.567-573, 2010.

M. C. Sanchez-vega, S. Chong, and T. Burne, Early gestational exposure to moderate concentrations 622 of ethanol alters adult behaviour in C57BL/6J mice, Behav Brain Res, vol.252, pp.326-333, 2013.

E. Stragier, V. Martin, and E. Davenas, Brain plasticity and cognitive functions after ethanol 625 consumption in C57BL/6J mice, Transl Psychiatry, vol.5, 2015.

D. Haouzi, M. Lekehal, and M. Tinel, Prolonged, but not acute, glutathione depletion promotes 627, 2001.

, Fas-mediated mitochondrial permeability transition and apoptosis in mice, Hepatology, vol.33, pp.1181-1188

V. Lacronique, A. Mignon, and M. Fabre, Bcl-2 protects from lethal hepatic apoptosis induced by 630 an anti-Fas antibody in mice, Nat Med, vol.2, pp.80-86, 1996.

E. Nova, G. C. Baccan, and A. Veses, Potential health benefits of moderate alcohol consumption: 632 current perspectives in research, Proc Nutr Soc, vol.71, pp.307-315, 2012.

,

H. Fang and R. L. Judd, Adiponectin Regulation and Function, Compr Physiol, vol.8, pp.1031-1063, 2018.

S. A. Polyzos, J. Kountouras, C. Zavos, and E. Tsiaousi, The role of adiponectin in the pathogenesis and 637 treatment of non-alcoholic fatty liver disease, Diabetes Obes Metab, vol.12, pp.365-383, 2010.

,

P. Legrand, D. Catheline, M. C. Fichot, and P. Lemarchal, Inhibiting delta9-desaturase activity impairs 640 triacylglycerol secretion in cultured chicken hepatocytes, J Nutr, vol.127, pp.249-256, 1997.

A. D. Attie, R. M. Krauss, and M. P. Gray-keller, Relationship between stearoyl-CoA desaturase 643 activity and plasma triglycerides in human and mouse hypertriglyceridemia, J Lipid Res, vol.43, pp.1899-1907, 2002.

S. C. Cazanave and G. J. Gores, Mechanisms and clinical implications of hepatocyte lipoapoptosis, Clin 646 Lipidol, vol.5, pp.71-85, 2010.

P. Hirsova, S. H. Ibrahim, G. J. Gores, and H. Malhi, Lipotoxic lethal and sublethal stress signaling in 648 hepatocytes: relevance to NASH pathogenesis, J Lipid Res, vol.57, pp.1758-1770, 2016.

F. Marra and G. Svegliati-baroni, Lipotoxicity and the gut-liver axis in NASH pathogenesis, J Hepatol, vol.651, pp.280-295, 2018.

K. Begriche, J. Massart, and M. Robin, Mitochondrial adaptations and dysfunctions in 653 nonalcoholic fatty liver disease, Hepatology, vol.58, pp.1497-1507, 2013.

I. Simões, A. Fontes, and P. Pinton, Mitochondria in non-alcoholic fatty liver disease, Int J 655 Biochem Cell Biol, vol.95, pp.93-99, 2018.

P. Hirsova, S. H. Ibrahim, and A. Krishnan, Lipid-Induced Signaling Causes Release of Inflammatory 657, 2016.

, Extracellular Vesicles From Hepatocytes, Gastroenterology, vol.150, pp.956-967

,

P. Puri, R. A. Baillie, and M. M. Wiest, A lipidomic analysis of nonalcoholic fatty liver disease, Hepatology, vol.660, pp.1081-1090, 2007.

L. L. Listenberger, X. Han, and S. E. Lewis, Triglyceride accumulation protects against fatty acid-662 induced lipotoxicity, Proc Natl Acad Sci, vol.100, pp.3077-3082, 2003.

A. K. Busch, E. Gurisik, and D. V. Cordery, Increased fatty acid desaturation and enhanced 665 expression of stearoyl coenzyme A desaturase protects pancreatic beta-cells from lipoapoptosis, Diabetes, vol.666, pp.2917-2924, 2005.

N. Alkhouri, L. J. Dixon, and A. E. Feldstein, Lipotoxicity in nonalcoholic fatty liver disease: not all lipids 668 are created equal, Expert Rev Gastroenterol Hepatol, vol.3, pp.445-451, 2009.

Z. Z. Li, M. Berk, T. M. Mcintyre, and A. E. Feldstein, Hepatic lipid partitioning and liver damage in 670 nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase, J Biol Chem, vol.284, pp.5637-5644, 2009.

K. Yamaguchi, L. Yang, and S. Mccall, Inhibiting triglyceride synthesis improves hepatic steatosis 673 but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis, Hepatology, vol.674, pp.1366-1374, 2007.

A. R. Thiam, R. V. Farese, and T. C. Walther, The biophysics and cell biology of lipid droplets, Nat Rev Mol, vol.676, pp.775-786, 2013.

F. Wilfling, H. Wang, and J. T. Haas, Triacylglycerol synthesis enzymes mediate lipid droplet 678 growth by relocalizing from the ER to lipid droplets, Dev Cell, vol.24, pp.384-399, 2013.

,

H. Yang, A. Galea, V. Sytnyk, and M. Crossley, Controlling the size of lipid droplets: lipid and protein 681 factors, Current Opinion in Cell Biology, vol.24, pp.509-516, 2012.

G. Gao, F. Chen, and L. Zhou, Control of lipid droplet fusion and growth by CIDE family 683 proteins, Biochim Biophys Acta Mol Cell Biol Lipids, vol.1862, pp.1197-1204, 2017.

,

B. Fromenty and D. Pessayre, Inhibition of mitochondrial beta-oxidation as a mechanism of 686 hepatotoxicity, Pharmacology & Therapeutics, vol.67, issue.95, pp.12-18, 1995.

K. Begriche, J. Massart, and M. Robin, Drug-induced toxicity on mitochondria and lipid 689 metabolism: mechanistic diversity and deleterious consequences for the liver, J Hepatol, vol.54, pp.773-794, 2011.

R. Hegarty, M. Deheragoda, E. Fitzpatrick, and A. Dhawan, Paediatric fatty liver disease (PeFLD): All is 692 not NAFLD -Pathophysiological insights and approach to management, J Hepatol, vol.68, pp.1286-1299, 2018.

S. Tandra, M. M. Yeh, and E. M. Brunt, Presence and significance of microvesicular steatosis in 695 nonalcoholic fatty liver disease, J Hepatol, vol.55, pp.654-659, 2011.

A. Canbay, S. Friedman, and G. J. Gores, Apoptosis: the nexus of liver injury and fibrosis, Hepatology, vol.697, pp.273-278, 2004.

S. Zhan, J. X. Jiang, and J. Wu, Phagocytosis of apoptotic bodies by hepatic stellate cells induces 699 NADPH oxidase and is associated with liver fibrosis in vivo, Hepatology, vol.43, pp.435-443, 2006.

S. J. Chapple, R. Siow, and G. E. Mann, Crosstalk between Nrf2 and the proteasome: therapeutic 702 potential of Nrf2 inducers in vascular disease and aging, Int J Biochem Cell Biol, vol.44, 2012.

T. Jung, A. Höhn, and T. Grune, The proteasome and the degradation of oxidized proteins: Part II -705 protein oxidation and proteasomal degradation, Redox Biol, vol.2, pp.99-104, 2014.

,

N. A. Osna, J. Haorah, V. M. Krutik, and T. M. Donohue, Peroxynitrite alters the catalytic activity of rodent 708 liver proteasome in vitro and in vivo, Hepatology, vol.40, pp.574-582, 2004.

T. M. Donohue and P. G. Thomes, Ethanol-induced oxidant stress modulates hepatic autophagy and 710 proteasome activity, Redox Biol, vol.3, pp.29-39, 2014.

D. Malhotra, E. Portales-casamar, and A. Singh, Global mapping of binding sites for Nrf2 712 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. 713, Nucleic Acids Res, vol.38, pp.5718-5734, 2010.

C. D. Byrne and G. Targher, NAFLD: a multisystem disease, J Hepatol, vol.62, pp.47-64, 2015.

. 82.-than, . Nn, and P. N. Newsome, A concise review of non-alcoholic fatty liver disease, Atherosclerosis, vol.717, pp.192-202, 2015.

, Values are means ± SEM for 10 mice per group. *Significantly different from naive HFD 766 mice, p<0.05 with a t-test. (b) Proportion of palmitic acid (C16:0), oleic acid (C18:1 n-9), saturated 767 fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in total lipids. Values are means ± 768 SEM for 10 mice per group. *Significantly different from naive HFD mice, (HFD+E). (a) Mass of fatty acids from total lipids and in the triglyceride and phospholipid 765 fractions, p.769

, Values are 770 means ± SEM for 10 mice per group. *Significantly different from naive HFD mice, p<0.05 with a 771 t-test. (d) Hepatic mRNA levels of genes involved in glycolysis and lipogenesis extracted from the 772 transcriptomic analysis (GSE116417), ?9-Desaturation index calculated as the ratio (C16:1 n-7 + C18:1 n-9)/(C16:0 + C18:0)

, Significantly different from naive HFD mice, p<0.05 with a Mann-Whitney test