A. J. Klar, Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast, Nature, vol.326, pp.466-470, 1987.

A. J. Klar, The developmental fate of fission yeast cells is determined by the pattern of Inheritance of parental and grand parental DNA strands, EMBO J, vol.9, pp.1407-1415, 1990.

R. Egel, Fission yeast mating-type switching: programmed damage and repair, DNA Repair (Amst, vol.4, pp.525-536, 2005.

A. J. Klar, Lessons learned from studies of fission yeast mating-type switching and silencing, Ann. Rev. Genet, vol.41, pp.213-236, 2007.

R. Egel and E. Eie, Cell lineage asymmetry of Schizosaccharomyces pombe: unilateral transmission of a high-frequency mating-type switching in diploid pedigrees, Curr. Genet, vol.3, pp.5-12, 1987.

H. Miyata and M. Miyata, Mode of conjugation in homothallic cells of Schizosaccharomyces pombe, J. Gen. Appl. Micro, vol.27, pp.365-371, 1981.

, Nucleic Acids Research, vol.47, issue.7, p.3433, 2019.

J. Z. Dalgaard and A. J. Klar, Orientation of DNA replication establishes mating-type switching pattern in S. pombe, Nature, vol.400, pp.181-184, 1999.

R. Egel, D. H. Beach, and A. J. Klar, Genes required for initiation and resolution steps of mating-type switching in fission yeast, Proc. Natl. Acad. Sci. U.S.A, vol.81, pp.3481-3485, 1984.

J. Z. Dalgaard and A. J. Klar, ) swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe, Cell, vol.102, pp.745-751, 2000.

B. S. Lee, S. I. Grewal, and A. J. Klar, Biochemical interactions between proteins and mat1 cis-acting sequences required for imprinting in fission yeast, Mol. Cell Biol, vol.24, pp.9813-9822, 2004.

J. Singh and A. J. Klar, DNA polymerase-alpha is essential for mating-type switching in fission yeast, Nature, vol.361, pp.271-273, 1993.

A. Holmes, L. Roseaulin, C. Schurra, H. Waxin, S. Lambert et al., Lsd1 and lsd2 control programmed replication fork pauses and imprinting in fission yeast, Cell Rep, vol.2, pp.1513-1520, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02013826

B. Arcangioli, A site-and strand-specific DNA break confers asymmetric switching potential in fission yeast, EMBO J, vol.17, pp.4503-4510, 1998.

S. Vengrova and J. Z. Dalgaard, RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching, Genes Dev, vol.18, pp.794-804, 2004.

S. Vengrova and J. Z. Dalgaard, The wild type Schizosaccharomyces pombe mat1 imprint of two ribonucleoetides, EMBO Rep, vol.7, pp.59-65, 2006.

A. M. Holmes, A. Kaykov, and B. Arcangioli, Molecular and cellular dissection of mating-type switching steps in Schizosaccharomyces pombe, Mol. Cell Biol, vol.25, pp.303-311, 2005.

S. Moreno, A. J. Klar, and P. Nurse, Molecular genetic analysis of fission yeast Schizosaccharomyces pombe, Methods Enzymol, vol.194, pp.795-823, 1991.

A. J. Klar and L. M. Miglio, Initiation of meiotic recombination by double-strand DNA breaks in S. pombe, Cell, vol.46, pp.725-731, 1986.

S. L. Forsburg, Comparison of Schizosaccharomyces pombe expression systems, Nucleic Acids Res, vol.21, pp.2955-2956, 1993.

C. Yu, M. J. Bonaduce, and A. Klar, Going in the right direction: mating-type switching inSchizosacchamromycs pombeis controlled by judicious expression of two different swi2 transcripts, Genetics, vol.190, pp.977-987, 2012.

Y. Wu, Q. Li, and X. Chen, Detecting protein-protein interactions by far-western blotting, Nat.Str. Biol, vol.2, pp.3278-3284, 2007.

H. Matsumura, H. Takahashi, T. Inoue, T. Yamamoto, H. Hashimoto et al., Crystal structure of intein homing endonuclease II encoded in DNA polymerase gene from hyperthermophilic archaeon Thermococcus kodakaraensis strain, Proteins, vol.63, pp.711-715, 2006.

B. L. Stoddard, Homing endonuclease structure and function, Q. Rev. Biophys, vol.38, pp.49-95, 2005.

A. Bakhrat, M. S. Jurica, B. L. Stoddard, and D. Raveh, Homology Modeling and MutationalAnalysisof HO Endonuclease of Yeast, Genetics, vol.166, pp.721-728, 2004.

L. Kniezewski, L. N. Kinch, N. V. Grishin, L. Rychlewski, and K. Ginalski, Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive metaprofile searches, BMS Str. Biol, vol.7, p.40, 2007.

W. C. Copeland and T. S. Wang, Mutational analysis of the human DNA polymerase alpha. The most conserved region in alpha-like DNA polymerases is involved in metal-specific catalysis, J. Biol. Chem, vol.268, pp.11028-11040, 1993.

D. Bhaumik and T. S. Wang, Mutational effect of fission yeast Pol alpha in cell cycle events, Mol. Biol Cell, vol.9, pp.2107-2123, 1998.

S. Tan and T. Wang, Analysis of fission yeast primase defines the checkpoint responses to aberrant S phase initiation, Mol. Cell. Biol, vol.20, pp.7853-7866, 2000.

D. J. Griffiths, V. F. Liu, P. Nurse, and T. S. Wang, Role of fission yeast primase defines the checkpoint responses to aberrant S phase initiation, Mol. Biol. Cell, vol.12, pp.115-128, 2001.

K. Fien and J. Hurwitz, Fission Yeast Mcm10 Contains Primase ACtivity, J. Biol. Chem, vol.281, pp.22248-22260, 2006.

P. D. Robertson, E. M. Warren, H. Zhang, D. B. Friedman, J. W. Lary et al., Domain architecture and biochemical characterization of vertebrate Mcm10, J. Biol. Chem, vol.283, pp.3338-3348, 2007.

K. Fien, V. Cho, J. Lee, S. Raychaudhary, I. Tappin et al., Primer utilization by DNA polymerase a-primase is influence by its interaction with Mcm10, 2004.

, J. Biol. Chem, vol.229, pp.16144-16153

E. M. Warren, H. Huang, E. Fanning, W. J. Chazin, and B. F. Eichman, Physical interactions between Mcm10, DNA and DNA Polymerase a, J. Biol. Chem, vol.284, pp.24662-24672, 2009.

R. M. Ricke and A. K. Bielinski, Mcm10 regulates the stability and chromatin association of DNA Pola, Mol. Cell, vol.16, pp.173-185, 2004.

X. Yang, G. Gregan, K. Lindner, H. Young, and S. E. Kearsey, Nuclear distribution and chromatin association of DNA polymerase a-primase is affected by TEV protease clevage of Cdc23 (Mcm10) in fission yeast, BMC Mol. Biol, vol.6, p.13, 2005.

W. Zhu, C. Ukomadu, S. Jha, T. Senga, S. K. Dhar et al., Mcm10 and And-1/CTF4 recruitDNA polymerasea to chromatin for initiation of DNA replication, Genes Dev, vol.21, pp.2288-2299, 2007.

S. L. Forsburg and P. Nurse, The fission yeast cdc19+ gene encodes a member of the MCM family of replication proteins, J. Cell Sci, vol.107, pp.2779-2788, 1994.

A. Coxon, K. Maundrell, and K. Kearsey, Fission yeast cdc21 + belongs to a family of proteins involved in an early step of chromosome replication, Nucleic Acids Res, vol.20, pp.5571-5577, 1992.

S. Miyake, N. Okishio, I. Samejima, Y. Kiraoka, T. Toda et al., Fission yeast genes nda1+ and nda4+, mutations of which lead to S phase block, chromatin alteration and Ca2+ suppression, are members of the CDC46/MCM2 family, Mol. Biol. Cell, vol.4, pp.1003-1015, 1993.

K. Takahashi, Y. Yamada, and M. Yanagida, Fission yeast minichromosome loss mutants mis cause lethal aneuploidy, Mol. Biol. cell, vol.10, pp.1145-1158, 1994.

H. Masai, S. Matsumoto, Y. You, N. Yoshizawa-sugata, and M. Oda, Eukaryotic Chromosomal DNA replication: Where, when and how?, Ann. Rev. Biochem, vol.79, pp.89-130, 2010.

Y. M. Thu, A. Bielinski, and K. , Enigmatic roles of Mcm10 in DNA replication, Trends Biochem. Sci, vol.38, pp.184-194, 2007.

C. Van, S. Yan, W. M. Michael, S. Waga, and K. A. Cimprinch, Continued primer synthesis at stalled replication forms contributes to checkpoint activation, J. Cell Biol, vol.189, pp.233-246, 2010.

O. Nielsen and R. Egel, Mapping the double-strand breaks at the mating type locus in fission yeast by genome sequencing, EMBO J, vol.8, pp.269-276, 1989.

C. Yu, M. J. Bonaduce, and A. J. Klar, Defining the epigenetic mechanism of asymmetric cell division of Schizosaccharomyces japonicus yeast, Genetics, vol.193, pp.85-94, 2013.

M. Y. Yang, M. Bowmaker, A. Reyes, L. Vergani, P. Angeli et al., Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetricDNA replication, Cell, vol.111, pp.495-505, 2002.

N. Mcelhinny, S. A. Watts, B. E. Kumar, D. Watt, D. L. Angeli et al., Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases, Proc. Natl. Acad. Sci. USA, vol.107, pp.4949-4954, 2010.

J. Z. Dalgaard, Causes and consequences of ribonucleotide incorporation into nuclear DNA, Trends Genet, vol.28, pp.592-597, 2012.

S. G. Durkin and T. W. Glover, Chromosome fragile sites, Ann. Rev. Genet, vol.41, pp.169-192, 2007.

H. J. Lim, Y. Jeon, C. H. Jeon, J. H. Kim, and H. Lee, Targeted disruption of Mcm10 causes defective embryonic cell prolieration and embryoniclethality, Biohcim. biophys. Acta, vol.1813, pp.1777-1783, 2011.

J. Z. Dalgaard and A. J. Klar, A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication of mat1 in S. pombe, Genes Dev, vol.15, pp.2060-2068, 2001.