E. Allman, D. Johnson, and K. Nehrke, Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in C. elegans, Am J Physiol Cell Physiol, vol.297, pp.1071-81, 2009.

T. L. Baars, S. Petri, C. Peters, and A. Mayer, Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium, Mol Biol Cell, vol.18, pp.3873-82, 2007.

Z. Balklava, S. Pant, H. Fares, and B. D. Grant, Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic, Nat Cell Biol, vol.9, pp.1066-73, 2007.

J. S. Bonifacino, Adaptor proteins involved in polarized sorting, J Cell Biol, vol.204, pp.7-17, 2014.

O. Bossinger, T. Fukushige, M. Claeys, G. Borgonie, and J. D. Mcghee, The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413, Dev Biol, vol.268, pp.448-56, 2004.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, pp.71-94, 1974.

D. M. Bryant, A. Datta, A. E. Rodriguez-fraticelli, J. Peranen, F. Martin-belmonte et al., A molecular network for de novo generation of the apical surface and lumen, Nat Cell Biol, vol.12, pp.1035-1080, 2010.

J. T. Chang, C. Kumsta, A. B. Hellman, L. M. Adams, and M. Hansen, Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging, 2017.

A. M. Collaco, P. Geibel, B. S. Lee, J. P. Geibel, and N. A. Ameen, Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR, Am J Physiol Cell Physiol, vol.305, pp.981-96, 2013.

N. Colombie, V. Choesmel-cadamuro, J. Series, G. Emery, X. Wang et al., Non-autonomous role of Cdc42 in cell-cell communication during collective migration, Dev Biol, vol.423, pp.12-18, 2017.

S. W. Crawley, M. S. Mooseker, and M. J. Tyska, Shaping the intestinal brush border, J Cell Biol, vol.207, pp.441-51, 2014.

M. Desclozeaux, J. Venturato, F. G. Wylie, J. G. Kay, S. R. Joseph et al., Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis, Am J Physiol Cell Physiol, vol.295, pp.545-56, 2008.

H. S. Dhekne, N. H. Hsiao, P. Roelofs, M. Kumari, C. L. Slim et al., Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes, J Cell Sci, vol.127, pp.1007-1024, 2014.

H. S. Dhekne, O. Pylypenko, A. W. Overeem, R. J. Ferreira, . Van-der et al., , 2018.

M. B. Heintzelman and M. S. Mooseker, Assembly of the brush border cytoskeleton: changes in the distribution of microvillar core proteins during enterocyte differentiation in adult chicken intestine, Cell Motil Cytoskeleton, vol.15, pp.12-22, 1990.

M. B. Heintzelman and M. S. Mooseker, Structural and compositional analysis of early stages in microvillus assembly in the enterocyte of the chick embryo, Differentiation, vol.43, pp.175-82, 1990.

P. R. Hiesinger, A. Fayyazuddin, S. Q. Mehta, T. Rosenmund, K. L. Schulze et al., The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila, Cell, vol.121, pp.607-627, 2005.

T. C. Iancu, M. Mahajnah, I. Manov, and R. Shaoul, Microvillous inclusion disease: ultrastructural variability, Ultrastruct Pathol, vol.31, pp.173-88, 2007.

Y. J. Ji, K. Y. Choi, H. O. Song, B. J. Park, J. R. Yu et al., VHA-8, the E subunit of V-ATPase, is essential for pH homeostasis and larval development in C. elegans, FEBS Lett, vol.580, pp.3161-3167, 2006.

R. S. Kamath and J. Ahringer, Genome-wide RNAi screening in Caenorhabditis elegans, Methods, vol.30, pp.313-334, 2003.

J. Kang, Z. Bai, M. H. Zegarek, B. D. Grant, and J. Lee, Essential roles of snap-29 in C. elegans, Dev Biol, vol.355, pp.77-88, 2011.

J. Kang, D. Shin, J. R. Yu, and J. Lee, Lats kinase is involved in the intestinal apical membrane integrity in the nematode Caenorhabditis elegans, Development, vol.136, pp.2705-2720, 2009.

P. R. Kiela and F. K. Ghishan, Physiology of Intestinal Absorption and Secretion, Best Pract Res Clin Gastroenterol, vol.30, pp.145-59, 2016.

A. J. Knight, N. M. Johnson, and C. A. Behm, VHA-19 is essential in Caenorhabditis elegans oocytes for embryogenesis and is involved in trafficking in oocytes, PLoS One, vol.7, p.40317, 2012.

B. C. Knowles, J. T. Roland, M. Krishnan, M. J. Tyska, L. A. Lapierre et al., Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease, J Clin Invest, vol.124, pp.2947-62, 2014.

I. Kolotuev, D. J. Bumbarger, M. Labouesse, and Y. Schwab, Targeted ultramicrotomy: a valuable tool for correlated light and electron microscopy of small model organisms, Methods Cell Biol, vol.111, pp.203-225, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00728321

D. V. Kravtsov, M. K. Ahsan, V. Kumari, S. C. Van-ijzendoorn, M. Reyes-mugica et al., Identification of intestinal ion transport defects in microvillus inclusion disease, Am J Physiol Gastrointest Liver Physiol, vol.311, pp.142-55, 2016.

S. K. Lee, W. Li, S. E. Ryu, T. Rhim, and J. Ahnn, Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms?, Biochim Biophys Acta, vol.1797, pp.1687-95, 2010.

S. Liegeois, A. Benedetto, J. M. Garnier, Y. Schwab, and M. Labouesse, The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans, J Cell Biol, vol.173, pp.949-61, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188024

S. Marion, E. Hoffmann, D. Holzer, C. Le-clainche, M. Martin et al., Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion, Traffic, vol.12, pp.421-458, 2011.

F. Martin-belmonte, A. Gassama, A. Datta, W. Yu, U. Rescher et al., PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42, Cell, vol.128, pp.383-97, 2007.

M. E. Maxson and S. Grinstein, The vacuolar-type H(+)-ATPase at a glance -more than a proton pump, J Cell Sci, vol.127, pp.4987-93, 2014.

J. D. Mcghee, The C. elegans intestine, pp.1-36, 2007.

M. Merkulova, T. G. Paunescu, A. Azroyan, V. Marshansky, S. Breton et al., Mapping the H(+) (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation, Sci Rep, vol.5, p.14827, 2015.

G. Michaux, D. Massey-harroche, O. Nicolle, M. Rabant, N. Brousse et al., The localisation of the apical Par/Cdc42 polarity module is specifically affected in microvillus inclusion disease, Biol Cell, vol.108, pp.19-28, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01231419

N. Morel, J. C. Dedieu, and J. M. Philippe, Specific sorting of the a1 isoform of the VH+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane, J Cell Sci, vol.116, pp.4751-62, 2003.

M. H. Mosa, O. Nicolle, S. Maschalidi, F. E. Sepulveda, A. Bidaud-meynard et al., Dynamic Formation of Microvillus Inclusions During Enterocyte Differentiation in Munc18-2-Deficient Intestinal Organoids, Cell Mol Gastroenterol Hepatol, vol.6, pp.477-493, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972441

T. Muller, M. W. Hess, N. Schiefermeier, K. Pfaller, H. L. Ebner et al., MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity, Nat Genet, vol.40, pp.1163-1168, 2008.

O. Nicolle, A. Burel, G. Griffiths, G. Michaux, and I. Kolotuev, Adaptation of Cryo-Sectioning for IEM Labeling of Asymmetric Samples: A Study Using Caenorhabditis elegans, Traffic, vol.16, pp.893-905, 2015.

K. Reinshagen, H. Y. Naim, and K. P. Zimmer, Autophagocytosis of the apical membrane in microvillus inclusion disease, Gut, vol.51, pp.514-535, 2002.

E. Rodriguez-boulan and I. G. Macara, Organization and execution of the epithelial polarity programme, Nat Rev Mol Cell Biol, vol.15, pp.225-267, 2014.

G. F. Vogel, M. W. Hess, K. Pfaller, L. A. Huber, A. R. Janecke et al., Towards understanding microvillus inclusion disease, Mol Cell Pediatr, vol.3, p.3, 2016.

G. F. Vogel, A. R. Janecke, I. M. Krainer, K. Gutleben, B. Witting et al., Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease, Traffic, vol.18, pp.453-464, 2017.

G. F. Vogel, K. M. Klee, A. R. Janecke, T. Muller, M. W. Hess et al., Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3, J Cell Biol, vol.211, pp.587-604, 2015.

G. F. Vogel, J. M. Van-rijn, I. M. Krainer, A. R. Janecke, C. Posovszky et al., , 2017.

V. G. Weis, B. C. Knowles, E. Choi, A. E. Goldstein, J. A. Williams et al., Loss of MYO5B in mice recapitulates Microvillus Inclusion Disease and reveals an apical trafficking pathway distinct to neonatal duodenum, Cell Mol Gastroenterol Hepatol, vol.2, pp.131-157, 2016.

C. L. Wiegerinck, A. R. Janecke, K. Schneeberger, G. F. Vogel, D. Y. Van-haaften-visser et al., Loss of syntaxin 3 causes variant microvillus inclusion disease, Gastroenterology, vol.147, p.10, 2014.

J. F. Winter, S. Hopfner, K. Korn, B. O. Farnung, C. R. Bradshaw et al., Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity, Nat Cell Biol, vol.14, pp.666-76, 2012.

H. Zhang, N. Abraham, L. A. Khan, D. H. Hall, J. T. Fleming et al., Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis, Nat Cell Biol, vol.13, pp.1189-201, 2011.

H. Zhang, A. Kim, N. Abraham, L. A. Khan, D. H. Hall et al., Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis, Development, vol.139, pp.2071-83, 2012.

H. Zhu, A. K. Sewell, and M. Han, Intestinal apical polarity mediates regulation of TORC1 by glucosylceramide in C. elegans, Genes Dev, vol.29, pp.1218-1241, 2015.

, Histogram shows the measurement of microvilli length from TEM images (n=5 microvilli measured/worm), V0/vha-1(RNAi) structural defects appear after 72h silencing

, V0-or V1-ATPase subunits silencing affects C. elegans development. Histogram shows the measurement of the worms' diameter from TEM images

, V0/vha-1 silencing often induced a detachment of the PM from the terminal web (C) as well as (D-E) increased the length of cell junctions (CeAJ). (E) shows the measurement of the electron-dense cell-cell junction length on TEM pictures

, V0/vha-1 depleted worms accumulate cell and/or bacterial debris in the intestinal lumen

, V0/vha-1 depleted N2 worms, contrary to control or V1/vha-8-depleted worms, are devoid of yolk storage granules (arrows). L, lumen; mv, microvilli; tw

. Ap,

. Bs,

, CeAJ, C. elegans adherens junctions

, In micrographs, worms are at the L4/young adult (72h RNAi) or adult

, Histograms show the mean ± SEM, dots represent individual worms and the total number of worms is indicated in brackets. n.s. non-significant, *p<0,05, ****p<0,0001