
HAL Id: hal-02160209
https://univ-rennes.hal.science/hal-02160209

Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preparation by electrophoretic deposition of
molybdenum iodide cluster-based functional

nanostructured photoelectrodes for solar cells
A. Renaud, T.K.N. Nguyen, F. Grasset, M. Raissi, V. Guillon, F.

Delabrouille, N. Dumait, P.-Y. Jouan, L. Cario, S. Jobic, et al.

To cite this version:
A. Renaud, T.K.N. Nguyen, F. Grasset, M. Raissi, V. Guillon, et al.. Preparation by electrophoretic
deposition of molybdenum iodide cluster-based functional nanostructured photoelectrodes for solar
cells. Electrochimica Acta, 2019, 317, pp.737-745. �10.1016/j.electacta.2019.05.154�. �hal-02160209�

https://univ-rennes.hal.science/hal-02160209
https://hal.archives-ouvertes.fr


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 

 

Preparation by Electrophoretic Deposition of Molybdenum Iodide Cluster-based Functional 

Nanostructured Photoelectrodes for Solar Cells 

A. Renaud,a* T. K. N. Nguyen,b,c F. Grasset,b,c M. Raissi,d V. Guillon,e F. Delabrouille,e N. 

Dumait,a P.-Y. Jouan,f L. Cario,f S. Jobic,f Y. Pellegrin,d F. Odobel,d S. Cordier,a T. Uchikoshi 

b,c 

aUniv Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France. Email: 

adele.renaud@univ-rennes1.fr  

bCNRS - Saint-Gobain - NIMS, UMI 3629, Laboratory for Innovative Key Materials and 

Structures (LINK), National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, 

Japan.  

cNational Institute for Materials Science, RCFM, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, 

Japan 

dLaboratoire de Chimie et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), 

Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France 

eEDF R&D, avenue des Renardières, 77818 Moret-sur-loing, France 

fInstitut des Matériaux Jean Rouxel, Université de Nantes, CNRS, 2 rue de la Houssinière, 

44322 Nantes cedex 3, France 

 

Abstract  

This work explores the potentiality of Mo6 clusters as new inorganic sensitizers with 

amphoteric properties for photoelectronic applications being non-toxic and stable. It reports 

on the design of photoelectrodes by electrophoretic deposition (EPD) of molybdenum 

octahedral metal cluster iodide (CMI) onto mesoporous TiO2 and NiO layers  before being 

deposited on FTO (i. e. CMI@TSO@FTO, TSO = TiO2 or NiO). Indeed, the low-cost, low-

waste and industrially scalable EPD method has allowed for the achievement of transparent, 
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homogeneous orange/red [Mo6I
i
8]

4+ cluster core-based films, and appears suitable for the 

sensitization of TiO2- and NiO-based electrodes of n- and p-type solar cells inspired from 

dye-sensitized solar cells (DSSCs). First, the EPD process was optimized by the direct 

deposition of CMI onto an FTO substrate (CMI@FTO) leading to the realization of highly 

transparent colored films. Second, strongly colored CMI@TSO@FTO photoelectrodes were 

achieved and integrated into solar cell devices. Hence, compared to the classical soaking 

method, the EPD process significantly improves the quality (i.e., its homogeneity and 

absorption properties) of the photoelectrodes, leading consequently to much better 

photovoltaic performances.  

Keywords: molybdenum, metallic cluster, electrophoretic deposition, photoelectrodes, thin 

film, solar cells. 

1. Introduction 

In a global context of serious environmental problems and increasing of energy consumption, 

photoelectrochemical devices are widely investigated for the purpose of energy 

conversion.[1,2] Indeed, photovoltaic cells, such as dye-sensitized solar cells (DSSCs),[1,3-9] and 

photocatalytic systems for hydrogen production, like dye-sensitized photoelectrochemical 

cells (DS-PECs) [10-13] have been, for more than two decades, the source of extensive research. 

Typically, these types of cells consist of a photoanode (photocathode), which is composed of 

nanostructured films with n-type (p-type) semiconductors (SC) that are connected to a 

platinum counter-electrode, or of tandem cells that are built upon the assembly of a 

photoanode and a photocathode. Transparent semiconducting oxides (TSO), such as TiO2,
[1-

7,10-13] ZnO,[14-17] and WO3
[18-21] for n-type semiconductors, or NiO,[8,12,22-24] copper oxides,[25-

29] and delafossite compounds[9,26,30-33] for p-type semiconductors, are widely studied as 

photoelectrode materials for the following reasons: their intrinsic optical and electronic 

properties, their stability towards photocorrosion and their aptitude for nanostructuration. So 
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far, due to efficiency reasons, TiO2 is the most prominently used material for energy 

conversion. In DSSCs, as well as in DS-PECs, TSOs are associated with a sensitizer 

(molecular dyes, quantum dots, inorganic pigments, etc.) that absorbs light; once excited, 

charges are injected in the external circuit of the cell if the electron-hole recombination 

phenomena at interfaces are minimized.[1,3-15,19-21,23,24,26,28,29,32-34] The mediator redox 

(typically the I-/I3
- redox couple) has an electron shuttle role.  It ensures the charge transport 

between the two electrodes (photoanode/counter-electrode or photoanode/photocathode) in 

the electrolyte (classically based on a nitrile solvent). Most of the current research concerning 

electrolytes is focused on the improvement of long-term stability and the safety of DSSCs 

through the replacement of the liquid organic solvent-based electrolyte with an aqueous 

electrolyte,[35] ionic liquids,[36,37] polymer gels[37-39] or a membrane,[40,41] solid hole 

transporting materials (HTMs),[42] etc. In this context, this work aims to investigate, with an 

exploratory approach, new amphoteric non-toxic and stable sensitizers in order to develop 

new functionalized nanostructured surfaces that exhibit photo-induced properties. This paper 

will focus exclusively on DSSCs as a photoelectrochemical application. Indeed, we recently 

demonstrated the potential interest of inorganic octahedral transition metal clusters as a new 

class of amphoteric light harvesters in photovoltaic cells inspired from DSSCs.[43] Our 

investigation opened the door to the integration of these octahedral transition metal clusters as 

a new non-toxic absorber in all inorganic solar cells inspired from lead-halide perovskite solar 

cells. Octahedral clusters are 1 nm sized inorganic moieties that consist of six metal atoms 

connected by metal-metal bonds which form a face-capped or edge-bridged octahedron by 14 

or 18 non-metal atoms, respectively, called ligands. The face-capped [(M6L
i
8)L

a
6]

n- clusters 

are composed of eight face capping inner ligands (Li
, L = halogens or chalcogens) and six 

apical ligands (La = halogens, OH-, H2O, CN-, etc.) (depicted in Figure 1a) while the edge-

bridged  [(M6L
i
12)L

a
6]

n+/- ones have twelve inner ligands (Li = halogens) and six apical ligands 
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(La
 = halogens, OH-, H2O, etc.). These cluster units are associated with inorganic or organic 

counter-ions (alkali cation, quaternary ammonium, etc.) in the solid state. The terminal apical 

ligands are labile and can easily be exchanged in a solution, while the inner ligands have 

strong interactions with the octahedral cluster. The chemical nature of Li and La influences the 

crystal and electronic structures which induce various intrinsic optical and electronic 

properties. The edge-bridged [(M6L
i
12)L

a
6]

n+/- units exhibit particularly interesting 

physicochemical behaviors related to a wide variety of long-range structural arrangements,[44-

29] several possible oxidation states of the cluster units and an ability to strongly absorb light 

in the UV-vis-NIR.[50-52] This opens up an avenue for potential applications in catalysis,[53] 

biology,[54-57] energy saving applications,[51,52] etc. Much attention is paid to the face-capped 

[(M 6L
i
8)L

a
6]

n- cluster units (L = halogen) due to their strong photoluminescence with a large 

Stokes shift,[58-61] their intense absorption in the UV-vis domain[43] and their (photo)catalytic 

properties[62,63] leading to their potential use in energy,[43,64] (photo)catalysis,[63,65] 

optoelectronic devices[63] and biotechnologies.[67-70] Thus, we have reported the use of the 

[Mo6I14]
2- cluster as a sensitizer in n- or p-type solar cells with a TiO2-based photoanode or a 

NiO-based photocathode, respectively.[43] At that time, the Mo6-based units were chemisorbed 

on the TSO surface by soaking the electrode in a cluster-based solution. However, this 

covering method led either to i) a homogeneous cluster coating with low absorption properties 

or ii) an inhomogeneous surface with a much pronounced color, but a higher concentration of 

recombination centers. The highly colored inhomogeneous surfaces are due to the cluster 

condensation through hydrogen bonding (after anion exchange in solution) under micro-size 

particles. In order to improve the photoelectrode quality (i.e., the absorption properties and 

homogeneity of the Mo6 coating), reinforce the anchoring of the cluster on the electrode 

surface, and consequently expect higher photovoltaic performances, we have embarked on the 

functionalization of TSO surfaces with Mo6 clusters through the electrophoretic deposition 
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technique (EPD). This was recently successfully applied to the deposition of Mo6
[71-74] or 

Ta6
[52,74] clusters on indium-doped tin oxide (ITO) glass substrates from Cs2Mo6Cl14, 

Cs2Mo6Br14, Cs2Mo6I8(OOCC2F5)6, ((n-C4H9)4N)2Mo6Br14, K4Ta6Br18 or 

[Ta6Br14(H2O)4].3H2O cluster precursors. We present herein the design by EPD of [Mo6I
a
8]

4+-

based photoanodes and photocathodes and its impact on the performances of the photovoltaic 

cells. 

2. Experimental Section 

2.1 Materials and Methods 

The chemicals were purchased from Sigma-Aldrich, VWR chemicals, Alfa Aesar and Acros, 

and were used as received. The Cs2Mo6I14 (CMI) powder was synthesized from MoI2 and CsI 

by the solid-state route as previously described.[75]  

2.1.1 The EPD Process. The Preparation of CMI Films. Two types of coatings were 

prepared: i) a direct deposition of CMI on FTO in order to prepare colored transparent 

CMI@FTO films as well as to optimize the EPD process, and ii) a deposition of CMI on TSO 

to prepare CMI@TSO@FTO photoelectrodes (TSO = TiO2 or NiO).  

Optimization of the EPD Process and the Preparation of Colored CMI@FTO. Three 

types of solvents were tested for the preparation of the EPD solutions: one alcohol (ethanol) 

and two ketones (acetone and MEK). Due to the natural condensation of clusters when water 

is used (i.e., clusters interact via hydrogen bonds after an apical ligand exchange of I- by OH- 

or H2O), a deposition in aqueous solutions was not attempted. Actually, a CMI powder was 

used as a precursor and was dissolved in acetone (HPLC grade, VWR Chemicals, Figure 1b) 

or methyl ethyl ketone (MEK, Alfa Aesar, 99+%) in order to obtain saturated solutions, which 

correspond to concentrations of 17 and 10 mM, respectively (i.e., solutions where the 

inorganic phase is not totally dissolved). A less concentrated acetone-based solution (7 mM) 

was prepared from the saturated one. CMI is not soluble in ethanol. Consequently, the 
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alcohol–based deposition solution was prepared by a solvent exchange with the acetone 

solution by adding absolute ethanol (Sigma-Aldrich) and the evaporation of acetone with a 

rotary evaporator. Due to different solubilities, the CMI concentration of this saturated 

alcoholic solution is lower than the ketone solutions (around 2.5 mM). The EPD setup (Figure 

1c) consisted of a clean Fluorine tin oxide (FTO, SnO2:F, Pilkington TEC8, 8 Ω/sq) substrate 

used as an anodic electrode and a stainless steel cathode, which were placed face-to-face with 

1 cm between the two and connected to a Keithley Model 2450 Series SourceMeter with a 

carbon tape. Electrodes were immerged into and removed from the EPD solution through the 

raising and lowering of the lab stand. The FTO substrates were cleaned in three steps of 

ultrasonication: first, in soapy water, second, in an aqueous solution that was acidified by 

using a few drops of hydrochloric acid (37%, Sigma-Aldrich), and third in ethanol. Finally, 

they were air-dried. Once the electrodes were immerged into the EPD solution, a continuous 

voltage was applied for a fixed time. The applied voltage was stopped once the electrodes 

were out of the EPD solution and the solvent evaporated. For the optimization step of the EPD 

process, several EPD experiments were performed using various voltages for deposition times 

of 5 and 30 s. To do so, we began from the lower to the higher voltage. Orange/red films 

occurred under an applied voltage ranging from 2 to 40 V.  

The Preparation of CMI@TSO@FTO Photoelectrodes. The TiO2 and NiO mesoporous 

films on an FTO substrate (TSO electrodes) were prepared according to previously reported 

protocols.[9,43,75-78] Succinctly, two types of deposition methods, were used for the preparation 

of  electrodes. The doctor blade technique was used for the study of the CMI deposition on 

the TSO electrodes and the screen-printing technique was chosen for the preparation of the 

optimized coatings of CMI on a TiO2- (NiO-) based photoanode (photocathode) for the 

fabrication of photovoltaic cells. The TiO2- and NiO-based films on cleaned FTO-coated glass 

substrates were prepared from a commercial TiO2 nanoparticles paste (DSL30NRD DyeSol) 
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and a NiO-based homemade paste that was based on commercial nanoparticles from 

Inframat©,[43,77,78] respectively. Then, the TiO2 and NiO electrodes were sintered (in the 

ambient air at 550 °C for 10 min and 450 °C for 30 min, respectively) to decompose organics 

and to create electronic percolation pathways. As for the photoanodes prepared for the 

fabrication of photovoltaic cells, an extra TiCl4 treatment was applied.[76] The CMI deposition 

on TSO (Figure 1c) was performed from the saturated acetone-based solution (17 mM) by 

replacing the FTO substrates on the anode side of the EPD setup by TSO electrodes. The 

deposition protocol is the same as that used for the preparation of the CMI@FTO films. The 

CMI@TSO@FTO films were prepared under an applied voltage ranging from 2 to 40 V for 

30 s.  

2.1.2 Solar Cells Fabrication. The solar cells were assembled according to the vacuum back-

filling technique.[79] The photoelectrodes were associated with a platinum counter-electrode 

and the interspace layer was filled back with an electrolyte composed of the iodide/triiodide 

couple or the tris(4,4’-di(tert-butyl)-2,2’-bipyridine) cobalt(II/III) couple. The composition of 

the iodide/triiodide electrolyte used in n- or p- DSSCs was slightly different. It consisted of a 

mixture of 0.05 M I2, 0.1 M LiI, 0.6 M of 1,2-dimethyl-3-butylimidazolium iodide and 0.5 M 

(2)4-tertbutylpyridine in acetonitrile  for the TiO2-based DSSCs or a mixture of 0.1 M I2, 1 M 

LiI in acetonitrile for the NiO-based DSSCs. The cobalt complex electrolyte was prepared 

with 0.1 M tris(4,4-bis-tert-butyl-2,2-bipyridine)cobalt(II/III) and 0.1 M LiClO4 in propylene 

carbonate.[80] Finally, the hole was isolated with a glass disc by using a Surlyn polymer spacer 

(Dupont, 60 µm). Three n- and p-DSSC cells were prepared from each electrolyte.  

2.2 Characterization Techniques. The X-ray powder diffraction (XRPD) data were 

collected on the CMI bulk and the CMI films at room temperature in a 2θ angle ranging from 

5 to 90 ° with a scan speed of 4 °·min-1 with a Bruker D8 Advance two-circle diffractometer 

(θ-2θ Bragg–Brentano mode) using Cu Kα radiation (l = 1.54056 Å) equipped with a Ge(111) 
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monochromator and a Lynx Eye detector. The UV-vis transmission spectra of the transparent 

films were obtained on a PerkinElmer Lambda 35 spectrophotometer and the CMI powder 

reflectance spectrum was obtained on a Varian Carry 100 spectrophotometer equipped with a 

Spectralon reflectance sphere accessory. The optical microscopy images were carried out with 

a Keyence VHX-1000 microscope. The surface morphology, chemical analyses of 

photoelectrodes and thickness of coatings on the FTO were investigated by scanning electron 

microscopy (SEM) using a JEOL JSM 7100 F microscope operating at 10 kV while coupled 

with an energy dispersive microscope.  The NiO and TiO2 photoelectrode cross-sections were 

prepared with the use of a focused gallium ion beam (FIB, FEI Helios NanoLab 600 

Dualbeam SEM/FIB) and the SEM photographs were realized at 3 kV. The transmission 

electron microscopy (TEM) was performed for the scrapped coatings on a JEOL 2100 

operating at an accelerated voltage of 200 kV; it was also performed for photoelectrode cross-

sections on an OSIRIS FEI that operated at 300 kV while coupled with an energy dispersive 

microscope. The solar cell performances were recorded on a Keithley model 2420 digital 

source meter under AM1.5G simulated sunlight (1000 W·m-2). 

3. Results and Discussion 

Based on previous works carried out on the coating of Mo6 or Ta6 cluster-based compounds 

on TCO glass substrates (FTO or ITO),[52,71-74] the first part of this study is dedicated to the 

EPD of molybdenum iodide on FTO (CMI@FTO). The quality and the thickness of the 

coating prepared by EPD depend on i) the stability, the solvation state and the concentration 

of the dispersion solution, ii) the applied voltage which determines the generated current and 

thus the energy given to the particles in suspension and iii) the deposition time. More 

precisely, the resistance of the coating drives the deposition parameters, such as the voltage 

and the time. As the deposition of particles in suspension increases the resistance of the 

electrode, the electric current between the two immerged electrodes decreases until reaching a 
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limit, at which point the deposition stops. The energy given to the particles is no longer 

enough. Thus, a higher voltage for a suitable deposition time allows for obtaining a higher 

current, and therefore, thicker coatings. The aim was to optimize the EPD process (the nature 

of the solvent, the EPD parameters) for the preparation of forthcoming TSO-based 

photoelectrodes. For this, the impact on the film quality of the EPD solution and the 

deposition parameters (namely, the applied voltage and the deposition time) was studied. 

Three common solvents (ethanol, acetone and MEK) were selected as the dispersing media 

for the CMI compound to obtain orange/red, stable and transparent saturated solutions. From 

each suspension, orange/red, Mo6 cluster iodide-based films (Figure S1 and 2a) were formed 

on the anode side, which is consistent with the negative charge of the anionic Mo6-based 

cluster ([Mo6I
i
8I

a
6]

2- or the [Mo6I
i
8I

a
6-z(OH)ax(solvent)ay]

n- (z = x + y) species formed after an 

apical ligand exchange). It is worth noting that, as in previous studies,[52,71]  for a similar 

thickness, the quality of CMI@FTO films (i.e., transparency and homogeneity) is higher 

when prepared from ketones, particularly from an acetone-based solution. This observation 

dictated our choice for acetone in the rest of this study. Then, the applied voltage, deposition 

time, and solution concentration were studied. The applied voltage appeared as the most 

impactful parameter. By increasing the voltage applied during the EPD process, the 

orange/red coloration of the Mo6 films becomes more intense (Figure 2a): the thickness and 

the density of the Mo6-based coatings increase and a red shift of the absorption threshold is 

noticed, but the transparency is not affected (Figure 2b). Above 20 V, the strength of 

coloration of the Mo6 films tends toward that of the bulk (Figure 2a and 2c). This optical trend 

is similar for the films obtained from the solution that is weakly concentrated at 7 mM (Figure 

S2). However, the film transparency is then slightly lower with a transmittance of the most 

colored film around 65% (compared to 72% for the saturated solution). The impact of the 

deposition time is less visible (Figure S1b). Due to the high CMI concentration of the 
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saturated solution (17 mM), 5 s of deposition time is enough, in a voltage range from 10 V to 

40 V, for obtaining strongly colored films. Finally, we selected for the study hereafter the 

acetone-based saturated solution as a deposition solution as well as a deposition time of 30 s. 

The microstructure and chemical composition of the films were studied using electron 

microscopy (SEM and TEM equipped with EDS, Figure 3), X-ray diffraction (XRD, Figure 

S3) and optical microscopy (Figure 4). The CMI@FTO films consist of a micrometric 

homogeneous amorphous layer of Mo6 clusters. Indeed, the SEM photographs displayed in 

Figures 3a and 3b show a smooth, homogeneous and ∼1 µm thick CMI coating on the FTO 

glass substrate. The TEM image and electron diffraction pattern in Figures 3c and 3d, as well 

as the XRD diagram (Figure S3), confirm the homogeneity of the film at a lower scale and 

highlight its real amorphous character. An atomic Mo/I ratio of 6/12 (theoretical value of 

6/14) was estimated by EDS, which suggests a partial exchange of apical I-a by solvent 

molecules or OH- groups originating from acetone or water contamination. Moreover, Cs 

atoms were not clearly detectable, which is consistent with previous studies.[43,71-74] During 

the EPD process, due to their respective charge, the anionic Mo6-based cluster nanoparticles 

and Cs+ cations migrate at the opposite electrodes ; anionic Mo6-clusters migrate toward the 

anode and Cs+ go to the cathode side. Based on the published studies discussing the formation 

mechanism of molybdenum bromide-based films,[72,81] we assume the formation of a 

[Mo6I
i
8I

a
4(OH)a2-x(solvent)ax]

n- specie or more probably of the [Mo6I
i
8I

a
4(OH)a2]

2- anion, 

which generates (H3O)2[Mo6I
i
8I

a
4(OH)a2] then [Mo6I

i
8I

a
4(H2O)a2].2H2O

[82] coatings when the 

[Mo6I
i
8I

a
4(OH)a2]

2- anion is neutralized by H3O
+ species (from the oxidation of contamination 

H2O on the FTO electrode). Cracks are observed in the SEM images but cannot be detected 

with the naked eye. We suspect that they originated from the solvent evaporation after that 

EPD process or from the evaporation of adsorbed water molecules or the residual solvent 

under ultra-vacuum conditions during the SEM characterization. The optical microscopy 
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images in Figure 4 clearly show the appearance of the cracks by increasing the applied 

voltage. Under 15 V, no crack is perceptible at the hundred-micrometer scale. Thus, the 

cracks at high voltage could arise from the deposition kinetic (the higher the electric field, the 

higher the kinetic) and the solvent evaporation, the impact of which increases with the coating 

thickness (the larger concentration of solvent molecules, the more difficult the diffusion due 

to a larger thickness). It is important to note here that the deposition of the Mo6 cluster is 

highly reproducible. For similar deposition conditions (the same EPD solution, applied 

voltage and time), the evolution of the generated current is comparable and leads to films 

having a similar thickness, microstructure and optical properties. Finally, the highest quality 

crack-free CMI@FTO films were obtained at an applied voltage of 10 V for 30 s. 

Indeed, homogeneous orange/red Mo6 cluster iodide films with adjustable optical properties 

have been prepared in a reproducible way by EPD on FTO substrates. After this proof of 

concept, we investigated i) the realization of photoelectrodes (i.e., CMI@TSO@FTO with 

TSO = TiO2 or NiO) via the functionalization by the EPD process of nanostructured n- and p-

type TSO electrodes used in solar cell systems for energy conversion, namely TiO2- and NiO-

based electrodes, and ii) the impact of the deposition method on photovoltaic performances. 

As previously described, the mesoporous TiO2 and NiO films were coated on FTO substrates 

and CMI was deposited by the EPD method using the saturated acetone-based solution under 

an applied voltage ranging from 2 V to 40 V for 30 s. As for the FTO substrate alone, a 

homogeneous orange/red coloration occurs from 2 V, and its intensity increases in a 

reproducible way with the voltage until reaching a strong red coloration for applied voltages 

greater than 15 and 20 V for NiO and TiO2, respectively (Figure 5). This suggests a good 

surface coverage of TSO nanostructured films. Moreover, the CMI coating cannot be 

removed even after a soaking in various solvents in which the cluster is soluble (ketone, 

ethanol or dimethylformamide). This implies strong interactions between Mo6 clusters and 
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TSO surfaces, and a real chemisorption phenomenon with a significant anchoring of clusters 

at the TSO surfaces. As shown in the photographs of Figure 5 and confirmed by the UV-vis 

transmittance spectra in Figure S4, the TiO2-based films exhibit a high transparency with only 

a low decrease of transmittance (around 5%) with the film coloration. This trend is similar for 

the NiO-based films, although their transparency is lower. The chemical analyses and surface 

morphology were investigated with optical and electron microscopy (SEM and TEM). The 

morphology of the films turns out to be comparable to that of the mesoporous semiconducting 

films without clusters (Figure 5). The TSO surfaces are not covered with a dense amorphous 

CMI layer. The Mo6 clusters seem to have penetrated the pores. This hypothesis is 

strengthened by the examination of SEM images and chemical analyses. Indeed, the cross-

sections prepared with the focused ion beam (FIB) technique (Figures 6 and S5) show that the 

mesoporous morphology of TiO2 and NiO films (around 1 µm thick) and the EDS analyses 

highlight i) the penetration of the Mo6 cluster along the semiconductor films and ii) the 

presence of cesium in small amounts (determined ratio Mo/Cs from 6/0.2 to 6/0.6 compared 

to the theoretical value of 6/2). Moreover, the TEM images (inserts of Figure 5) show 

nanocrystallites surrounded by a thin amorphous cluster layer (around 1 – 3 nm corresponding 

to one to three cluster rows) confirming the homogeneous coating of TiO2 and NiO by Mo6 

cluster species. The XRD patterns in Figure S3 corroborate the amorphous character of the 

CMI coating since the diffraction peaks correspond to the TSO layers only. As for the 

CMI@FTO films, the I/Mo atomic ratio determined by EDS on the CMI@TSO@FTO 

electrode surfaces is lower than the theoretical value, around 1.8 (1) and 2.0 (2) for the TiO2 

and NiO films, respectively. This is consistent with the apical ligand exchange described 

previously, namely [Mo6I
i
8I

a
6-z(OH)ax(solvent)ay]

n- species in solution. In light of our previous 

study on CMI@FTO, we investigated the crack process. Based on the optical microscope 

images (Figure 4), it seemed that, as for the CMI@FTO films, cracks appear on the NiO-
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based films (CMI@NiO@FTO films) from an applied voltage of 20 V, whereas no crack is 

visible on the TiO2-based films (CMI@TiO2@FTO films) under the same conditions. This 

can be due to a difference of porosity and compactness between the two types of films. 

Indeed, we can see in Figures 5, 6 and S5 that the NiO films consist of conglomerates of NiO 

nanoparticles, whereas the spatial distribution of nanoparticles is better for TiO2 electrodes 

(TiO2 nanoparticles are better separated). It results in a non-uniform porosity for NiO films 

with larger pores corresponding to preferential flow paths of the charges in solution. Thus, the 

mesoporous network is weakened when the kinetic is too high, leading to cracks. Above 20 V, 

the electric field proves to be too large. It results in the damage of the NiO coating. Moreover, 

the SEM images on some of the TiO2-based films that are prepared at 40 V highlight some 

breaks revealing the appearance of cracks (Figure S4b). Thus, in order to minimize the charge 

recombination and shunt currents, the photoelectrodes used for photovoltaic cell fabrication 

were prepared at 20 and 15 V for photoanodes (CMI@TiO2@FTO) and photocathodes 

(CMI@NiO@FTO), respectively.  

Compared to the previous study,[43] the photoelectrodes obtained by the EPD process rather 

than by the soaking method are in a reproducible way i) more homogeneous since no 

Mo6I14(H2O)2·xH2O micro-particles are observed and ii) more strongly colored (Figure S6). 

This higher film quality should result in higher photovoltaic performances. The solar cells 

were then assembled according to the vacuum back-filling technique.[79] The cells are noted as 

TiO2/I, TiO2/Co and NiO/Co for TSO/redox mediator. The cobalt electrolyte was preferred 

for the NiO-based cells for reasons of efficiency: the NiO/I cell obtained in a previous 

investigation[43] led to poor efficiency. In addition, cobalt electrolytes are known to lead to 

increased output potential for p-type solar cells, thanks to a drastically decreased charge 

recombination at the NiO/Dye interface, due to the steric bulk of the cobalt complex that 

limits interaction between holes in NiO and electrons on the redox mediator. The 
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performances of the solar cells under AM1.5 illumination (1000 W·m-2) are depicted in Figure 

7 and are gathered in Table 1; they are compared to those obtained from the soaking method. 

It is clearly evidenced that the photoconversion efficiency is systematically much higher by 

using EPD as the deposition process rather than the soaking method (Figure 7). It is important 

to note that the comparison of the best performances of the two types of cells is representative 

of all cell performances (the performances of the cells from photoelectrodes obtained from 

EPD are systematically higher).  The improvement of the photoelectrode coloration leads to 

an increase of the short circuit current density (JSC) by a factor of 2 or 3 for TiO2- and NiO-

based cells using iodide and cobalt electrolytes, respectively. In the case of the TiO2 with a 

cobalt electrolyte (TiO2/Co), an increase of the VOC is observed for EPD devices, in direct line 

with a better (denser) coverage of the surface of the semiconductor. However, the JSC is not 

improved despite the better light harvesting efficiency. This is likely due to steric effects: the 

cobalt complex diffusion in the electrolyte is sluggish and the regeneration of oxidized 

clusters (following photo-injection) is not favored from the kinetic point of view. However, 

due to the higher homogeneity of the film chemisorption and the decrease of the charge 

recombination (initially due to the microparticles of the condensed cluster on the 

semiconductor surface) the open circuit voltage (VOC), the fill factor (FF), and the 

photoconversion efficiency (η) are clearly enhanced for all cells (Table 1). It is worth noting 

that, on one hand, the performances obtained here are comparable to those reported on solid 

state n-DSSCs based on a triarylamine organic dye functionalized by a carbazole unit.[83] On 

the other hand, the performances obtained for the NiO/Co system are also significant 

compared to those reported in recent works dealing with the investigation of Li-doped NiO in 

p-DSSC[84] or the use of novel carbazole-based push-pull organic dyes.[85] Indeed, the 

interfacial photo-induced charge separated state is rather long-lived. Cobalt redox shuttles can 
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only be implemented in p-type solar cells where the geminate charge recombination is slowed 

down, because the regeneration of the photo-reduced dye (or cluster in our case) is sluggish. 

4. Conclusion 

To sum up, orange/red transparent and homogeneous Mo6 cluster iodide coatings on FTO 

glass substrates (CMI@FTO films) were prepared for the first time by the EPD process from 

a precursor solution of Cs2Mo6I14. The EPD process (the solvent, the EPD parameters) was 

optimized and the optical properties, morphology and composition of the films were 

investigated. The coloration of the films can be, in a reproducible way, tuned by adjusting the 

deposition parameters (voltage and time). However, an important electric field leads to the 

generation of cracks. Then, the challenge in the preparation of cluster-based photoelectrodes 

consisted in obtaining homogeneous films with intense coloration and without cracks in order 

to have the best photovoltaic performances. By using EPD, we succeeded at fabricating high-

quality, orange mesoporous photoanodes and photocathodes through the deposition of cluster-

based, homogeneous, amorphous layers Mo6 onto TiO2 and NiO-based electrodes, 

respectively. This improvement of film quality compared to the classical soaking method led 

to the increase of the photoconversion efficiency of photovoltaic cells up to 300%. Beyond 

the DSSC cells, these promising results pave the way for the investigation of these 

homogeneous transition metal cluster-based surfaces for a panel of photoelectronic 

applications, ranging from photoelectrochemical devices (PEC) to all solid solar cells. The 

future challenges in using the Mo6 cluster as a non-toxic alternative (stable under atmospheric 

conditions) to lead-halide perovskite is the realization of crystalline layers and the 

optimization of band alignment between the cluster and the n-type TSO in order to favor an 

effective charge transfer.[86] 
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Fig. 1. a) Representation of the Mo6 cluster anion; Li and La correspond to inner and apical 

ligands, respectively.  b) Photograph of the acetone-based saturated deposition solution and 

c) schematic representation of the EPD setup. 

 

Fig. 2. a) Photographs of the colored CMI@FTO films obtained from the acetone-based 

saturated deposition solution (17 mM) at various applied voltages during 30 s and b) their 

UV-vis transmission spectra. c) Photograph of the CMI powder.  
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Fig. 3. a) and b) SEM images of the surface and the cross section of a CMI@FTO film 

prepared by EPD with the deposition solution at a concentration of 17 mM at 10 V for 30 s. 

TEM c) image and d) diffraction pattern of the scrapped film.  
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Fig. 4. Optical microscopy photographs of CMI films on FTO substrate (CMI@FTO), TiO2 

(CMI@TiO2@FTO) and NiO (CMI@NiO@FTO) electrodes according the applied voltage. 

 

 

Fig. 5. Photographs of a) CMI@TiO2@FTO and b) CMI@NiO@FTO photoelectrodes 

prepared by doctor blading before and after coloration by EPD with the CMI deposition 

solution of 17 mM at different voltages for 30 s. SEM and TEM (insert) of b) 

CMI@TiO2@FTO and c) CMI@NiO@FTO photoelectrodes prepared at 20 V and 15 V for 

30 s respectively. 

 

Fig. 6. a) SEM image of a cross-section a CMI@TiO2@FTO photoelectrode obtained at 20 V 

for 30 s and b) and c) EDS analyses on the mesoporous TiO2/CMI layer. Iodine and tin rays 
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are detected in the same energy range and cannot be separated explaining an error of 

detection of I in the FTO layer. 

 

Fig. 7. Comparison of photoresponses in the dark (dash lines) and underAM1.5 illumination 

(1000 W·m-2, solid line) of photovoltaic cells prepared from a) CMI@TiO2@FTO and b) 

CMI@NiO@FTO photoelectrodes colored by soaking method or by EPD for 30 s at 20 and 

15 V, respectively. The electrolytes used were the I-/I3
- couple and the cobalt complex for a) 

CMI@TiO2@FTO and b) CMI@NiO@FTO photoelectrodes, respectively. 

 

 

Table 1. Photovoltaic performances of DSC devices constructed with TiO2 and NiO as n- and 

p-type semiconductors deposited by EPD or in parentheses by soaking method. 

 

 

 

 

TSO-electrolyte JSC (mA·cm-2) VOC (mV) FF (%) η (%) 

TiO2-I 1.13 (0.64) 529 (502) 74 (71) 0.44 (0.23) 
TiO2-Co 0.90 (1.17) 371 (295) 75 (54) 0.25 (0.19)  

NiO-Co 0.61 (0.36) 254 (183) 43 (32) 0.07 (0.02) 


