B. O'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films, Nature, vol.353, p.737, 1991.

A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol.238, p.37, 1972.

Y. Cao, Y. Liu, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics, Joule, vol.2, p.1108, 2018.

K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa et al., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chem. Commun, vol.51, p.15894, 2015.

A. Yella, H. Lee, H. Tsao, C. Yi, A. K-chandiran et al.,

C. Yeh, S. M-zakeeruddin, and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science, vol.334, p.629, 2011.

D. Lu, J. Li, G. Lu, L. Qin, D. Liu et al., Enhanced photovoltaic properties of dye-sensitized solar cells using three-component CNF/TiO 2 /Au heterostructure, J. Colloid and Interface Sci, vol.542, p.168, 2019.

Y. Ding, J. Yao, L. Hu, and S. Dai, Controlled synthesis of symbiotic structured TiO 2 microspheres to improve the performance of dye-sensitized solar cells, Sol. Energy, vol.183, p.587, 2019.

S. Powar, T. Daeneke, M. T. Ma, D. Fu, N. W. Duffy et al.,

P. Mishra, L. Baeuerle, U. Spiccia, and . Bach, Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(II)/(III) electrolytes, Angew. Chem. Int. Ed, vol.52, p.602, 2013.

A. Renaud, L. Chavillon, Y. Pleux, . Pellegrin, M. Blart et al.,

S. Cario and . Jobic, CuGaO 2 : a promising alternative for NiO in p-type dye solar cells, J. Mater. Chem, vol.22, p.14353, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00864784

A. J. Bard and M. A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen, Acc. Chem. Res, vol.28, p.141, 1995.

R. Brimblecombe, A. Koo, G. C. Dismukes, G. F. Swiegers, and L. Spiccia, Solar driven water oxidation by a bioinspired manganese molecular catalyst, J. Am. Chem. Soc, vol.132, p.2892, 2010.

Z. Yu, F. Li, and L. Sun, Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components, Energy Environ. Sci, vol.8, p.760, 2015.

N. Wei, Y. Liu, M. Feng, Z. Li, S. Chen et al., Controllable TiO 2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light, Appl. Catal. B Environ, vol.244, p.519, 2019.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, ZnO nanostructures for dye-sensitized solar cells, Adv. Mater, vol.21, p.4087, 2009.

M. T. Efa and T. Imae, Effects of carbon dots on ZnO nanoparticle-based dye-sensitized solar cells, Electrochimica Acta, vol.303, p.204, 2019.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai et al., N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure, Scientific Reports, vol.5, p.12925, 2015.

J. Yoon, J. Lee, and Y. Sung, Enhanced photoelectrochemical properties of Zscheme ZnO/p-n Cu 2 O PV-PEC cells, J. Alloys Compd, vol.771, p.869, 2019.

A. Tacca, L. Meda, G. Marra, A. Savoini, S. Caramori et al.,

G. Pedro, P. P. Boix, S. Gimenez, and J. Bisquert, Photoanodes based on nanostructured WO 3 for water splitting, ChemPhysChem, vol.13, p.3025, 2012.

A. Apolinário, T. Lopes, C. Costa, J. P. Araùjo, and A. M. Mendes, Multilayered WO, vol.3

, nanoplatelets for efficient photoelectrochemical water splitting: the role of the annealing ramp, vol.2, p.1040, 2019.

H. Zheng, Y. Tachibana, and K. Kalantar-zadeh, Dye-sensitized solar cells based on WO 3, Langmuir, vol.26, p.19148, 2010.

M. Younasa, M. A. Gondala, M. A. Dastageera, and U. Baig, Fabrication of cost effective and efficient dye sensitized solar cells with WO 3 -TiO 2 nanocomposites as photoanode and MWCNT as Pt-free counter electrode, Ceram. Int, vol.45, p.936, 2019.

C. Hu, K. Chu, Y. Zhao, and W. Y. Teoh, Efficient photoelectrochemical water splitting over anodized p-type NiO porous films, ACS Appl. Mater. Interfaces, vol.6, p.18558, 2014.

I. Yoo, S. S. Kalanur, and H. Seo, A nanoscale p-n junction photoelectrode consisting of an NiO x layer on aTiO 2 /CdS nanorod core-shell structure for highly efficient solar water splitting, Appl. Catal. B Environ, vol.250, p.200, 2019.

R. Tan, Z. Wei, J. Liang, Z. Lv, B. Chen et al., Enhanced open-circuit photovoltage and charge collection realized in pearl-like NiO/CuO composite nanowires based p-type dye sensitized solar cells, Mater. Res. Bull, vol.116, p.131, 2019.

P. Wang, Y. H. Ng, and R. , Embedment of anodized p-type Cu 2 O thin films with CuO nanowires for improvement in photoelectrochemical stability, Nanoscale, vol.5, p.2952, 2013.

Y. J. Jang and J. S. Lee, Photoelectrochemical water splitting with p-type metal oxide semiconductor photocathodes, ChemSusChem, vol.12, p.1835, 2009.

J. Li, X. Jin, R. Li, Y. Zhao, X. Wang et al., Copper oxide nanowires for efficient photoelectrochemical water splitting, Appl. Catal. B Environ, vol.240, p.1, 2019.

T. Jiang, M. Bujoli-doeuff, Y. Farré, Y. Pellegrin, E. Gautron et al., CuO nanomaterials for p-type dye-sensitized solar cells, RSC Adv, vol.6, p.112765, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01723609

O. Langmar, E. Fazio, P. Schol, G. Torre, R. D. Costa et al., Controlling interfacial charge transfer and fill factors in CuO-based tandem dye-Sensitized solar cells, Angew. Chem. Int. Ed, vol.58, p.4056, 2019.

J. Gu, A. Wuttig, J. W. Krizan, Y. Hu, Z. M. Detweiler et al., Mg-doped CuFeO 2 photocathodes for photoelectrochemical reduction of carbon dioxide, J. Phys. Chem. C, vol.117, p.12415, 2013.

L. Mao, S. Mohan, and Y. Mao, Delafossite CuMnO 2 as an efficient bifunctional oxygen and hydrogen evolution reaction electrocatalyst for water splitting, J. Electrochem. Soc, vol.166, p.233, 2019.

A. B. Muñoz-garcía, L. Caputo, E. Schiavo, C. Baiano, P. Maddalena et al., Ab initio study of anchoring groups for CuGaO 2 delafossite-based p-type dye sensitized solar cells, Front. Chem, vol.7, p.158, 2019.

I. C. Kaya, S. Akin, H. Akyildiz, and S. Sonmezoglu, Highly efficient tandem photoelectrochemical solar cells using coumarin6 dye-sensitized CuCrO 2 delafossite oxide as photocathode, Sol. Energy, vol.169, p.196, 2018.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc, vol.131, p.6050, 2009.

F. Bella, S. Galliano, G. Piana, G. Giacona, G. Viscardi et al.,

. Gerbaldi, Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl 4 treatment, Electrochim. Acta, vol.302, p.31, 2019.

M. ?olovi?, J. Volav?ek, E. Stathatos, N. ?. Koro?in, M. ?obak et al., Amphiphilic POSS-based ionic liquid electrolyte additives as a boost for dye-sensitized solar cell performance, Sol. Energy, vol.183, p.619, 2019.

C. Li, C. Xin, L. Xu, Y. Zhong, and W. Wu, Components control for high-voltage quasisolid state dye-sensitized solar cells based on two-phase polymer gel electrolyte, Sol. Energy

P. Wang, L. Yang, H. Wu, Y. Cao, J. Zhang et al.,

M. Zakeeruddin and . Grätzel, Stable and efficient organic dye-sensitized solar cell based on ionic liquid electrolyte, Joule, vol.2, p.2145, 2018.

V. Sundararajan, N. M. Saidi, S. Ramesh, K. Ramesh, G. Selvaraj et al., Quasi solid-state dye-sensitized solar cell with P(MMA-co-MAA)-based polymer electrolytes, J. Solid State Electrochem, vol.23, p.1179, 2019.

F. Bella, M. Imperiyka, and A. Ahmad, Photochemically produced quasi-linear copolymers for stable and efficient electrolytes in dye-sensitized solar cells, J. Photochem. Photobiol. A, vol.289, p.73, 2014.

M. Imperiyka, A. Ahmad, S. A. Hanifah, and F. Bella, A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells, Phys. B, vol.450, p.151, 2014.

B. Lee, Y. Ezhumalai, W. Lee, M. Chen, C. Yeh et al., Cs 2 SnI 6 encapsulated multi-dye sensitized all solid-state solar cells, ACS Appl. Mater. Interfaces, Just Accepted Manuscript

A. Renaud, F. Grasset, B. Dierre, T. Uchikoshi, N. Ohashi et al.,

S. Cario, F. Jobic, S. Odobel, and . Cordier, Inorganic molybdenum clusters as light-harvester in all inorganic solar cells: A proof of concept, ChemistrySelect, vol.1, p.2284, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01475823

D. Bauer and H. Schnering, Beiträge zur chemie der elemente niob und tantal

. Lxvii, Die struktur der tantalhalogenide Ta 6 Cl 15 und Ta 6 Br 15, Z. Anorg. Allg. Chem, vol.361, p.259, 1968.

S. Cordier, C. Perrin, and M. Sergent, Crystallochemistry of some new niobium bromides with (Nb 6 Br 18 ) units: structures of CsErNb 6 Br 18 and Cs 2 EuNb 6 Br 18, Z. Anorg. Allg. Chem

S. Cordier, C. Loisel, C. Perrin, and M. Sergent, Tantalum chlorides in octahedral cluster chemistry: the structures of Cs 2 PbTa 6 Cl 18 and CsPbTa 6 Cl 18, J. Solid State Chem, vol.147, p.350, 1999.

S. Kamiguchi, T. Mori, M. Watanabe, A. Suzuki, M. Kodomari et al.,

T. Iwasawa and . Chihara, Retention of the octahedral metal framework of Nb and Mo halide clusters in catalytic decomposition of phenyl acetate to phenol and ketene, J. Mol. Catal. A: Chem, vol.253, p.176, 2006.

M. N. Sokolov, P. A. Abramov, M. A. Mikhailov, E. V. Peresypkina, A. V. Virovets et al., Simplified synthesis and structural study of {Ta 6 Br 12 } clusters, Z. Anorg. Allg. Chem, vol.636, p.1543, 2010.

J. König, I. Dartsch, A. Topp, E. Guillamón, R. Llusar et al., Air-stable, well-soluble A I 2 [Nb 6 Cl 18 ] cluster compounds (A I = organic cation): a new route for preparation, single-crystal structures, properties, and ESI-mass spectra, Z. Anorg. Allg. Chem, vol.642, p.572, 2016.

W. H. Chapin, Halide bases of tantalum, J. Am. Chem. Soc, vol.32, p.323, 1910.

A. Renaud, M. Wilmet, T. G. Truong, M. Seze, P. Lemoine et al.,

T. Saito, T. Ohsawa, N. Uchikoshi, S. Ohashi, F. Cordier et al., Transparent tantalum cluster-based UV and IR blocking electrochromic devices, J. Mater. Chem. C, vol.5, p.8160, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581225

T. K. Nguyen, A. Renaud, M. Wilmet, N. Dumait, S. Paofai et al., New ultra-violet and near-infrared blocking filters for energy saving applications: fabrication of tantalum metal atom cluster-based nanocomposite thin films by electrophoretic deposition, J. Mater. Chem. C, vol.5, p.10477, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01631913

S. Nagashima, S. Kamiguchi, and T. Chihara, Catalytic reactions over halide cluster complexes of group 5-7 metals, vol.4, p.235, 2014.

J. Löwe, D. Stock, B. Jap, P. Zwickl, W. Baumeister et al., Science, vol.268, p.533, 1995.

P. Cramer, D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-davis et al.,

A. M. Burgess, P. R. Edwards, R. D. David, and . Kornberg, Architecture of RNA polymerase II and implications for the transcription mechanism, Science, vol.288, p.640, 2000.

K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science, vol.303, p.1831, 2004.

B. F. Mullan, M. T. Madsen, L. Messerle, V. Kolesnichenko, and J. Kruger, X-ray attenuation coefficients of high-atomic-number, hexanuclear transition metal cluster compounds: A new paradigm for radiographic contrast agents, Acad. Radiol, vol.7, p.254, 2000.

H. Sun and Y. Sakka, Luminescent metal nanoclusters: controlled synthesis and functional applications, Sci. Technol. Adv. Mater, vol.15, p.14205, 2014.

K. Costuas, A. Garreau, A. Bulou, B. Fontaine, J. Cuny et al.,

J. Molard, E. Duvail, S. Faulques, and . Cordier, Combined theoretical and time-resolved
URL : https://hal.archives-ouvertes.fr/hal-01222623

, ? metal cluster units: evidence of dual emission, Phys. Chem. Chem. Phys, vol.17, p.28574, 2015.

B. Dierre, K. Costuas, N. Dumait, S. Paofai, M. Amela-cortes et al., Mo 6 cluster-based compounds for energy conversion applications: comparative study of photoluminescence and cathodoluminescence, Sci. Technol. Adv. Mater, vol.18, p.458, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578524

J. Dechézelles, T. Aubert, F. Grasset, S. Cordier, C. Barthou et al., Fine tuning of emission through the engineering of colloidal crystals, Phys. Chem. Chem. Phys, vol.12, p.11993, 2010.

M. Turner, V. B. Golovko, O. P. Vaughan, P. Abdulkin, A. Berenguer-murcia et al.,

B. F. Tikhov, R. M. Johnson, and . Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters, Nature, vol.454, p.981, 2008.

M. Feliz, M. Puche, P. Atienzar, P. Concepciun, S. Cordier et al., In situ generation of active molybdenum octahedral clusters for photocatalytic hydrogen production from water, ChemSusChem, vol.9, 1963.
URL : https://hal.archives-ouvertes.fr/hal-01364268

Y. Zhao and R. R. Lunt, Transparent luminescent solar concentrators for large-area solar windows enabled by massive Stokes-shift nanocluster phosphors, Adv. Ener. Mater, vol.3, p.1143, 2013.

A. Barras, M. R. Das, R. R. Devarapalli, M. V. Shelke, S. Cordier et al.,

. Boukherroub, One-pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity, Appl. Catal. B, vol.130, p.270, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00813905

P. S. Kuttipillai, Y. Zhao, C. J. Traverse, R. J. Staples, B. G. Levine et al., Light-emitting diodes: Phosphorescent nanocluster light-emitting diodes, Adv. Mater, vol.28, p.319, 2016.

T. Aubert, F. Hurtado, M. A. Esnault, C. Neaime, D. Lebret-chauvel et al.,

P. Jeanne, C. Pellen, L. L. Roiland, N. Polles, K. Saito et al.,

S. Grasset and . Cordier, Extended investigations on luminescent Cs 2 [Mo 6 Br 14 ]@SiO 2 nanoparticles: physico-structural characterizations and toxicity studies, J. Phys. Chem. C, vol.117, 2013.

K. Kirakci, V. ?ícha, J. Holub, P. Kubàt, and K. Lang, Luminescent hydrogel particles prepared by self-assembly of ?-cyclodextrin polymer and octahedral molybdenum cluster complexes, Inorg. Chem, vol.53, p.13012, 2014.

K. Kirakci, P. Kubàt, K. Fejfarova, `. , J. Martin?ík et al., X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: a new class of nanoscintillators, Inorg. Chem, vol.55, p.803, 2016.

C. Neaime, M. Amela-cortes, F. Grasset, Y. Molard, S. Cordier et al.,

T. Mortier, K. Takei, H. Takahashi, M. Haneda, S. Verelst et al., Time-gated luminescence bioimaging with new luminescent nanocolloids based on [Mo 6 I 8 (C 2 F 5 COO) 6 ] 2? metal atom clusters, Phys. Chem. Chem. Phys, vol.18, p.30166, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438115

T. K. Nguyen, F. Grasset, B. Dierre, C. Matsunaga, S. Cordier et al.,

T. Ohashi and . Uchikoshi, Fabrication of transparent thin film of octahedral molybdenum metal clusters by electrophoretic deposition, ECS J. Solid State Sci. Technol, vol.5, p.178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398036

T. K. Nguyen, B. Dierre, F. Grasset, A. Renaud, S. Cordier et al., Formation mechanism of transparent Mo 6 metal atom cluster film prepared by electrophoretic deposition, J. Electrochem. Soc, vol.164, p.412, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544457

T. K. Nguyen, B. Dierre, F. Grasset, N. Dumait, S. Cordier et al.,

H. Renaud, N. Fudouzi, T. Ohashi, and . Uchikoshi, Electrophoretic coating of octahedral molybdenum metal clusters for UV/NIR light screening, Coatings, vol.7, p.114, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614780

T. K. Nguyen, A. Renaud, B. Dierre, B. Bouteille, M. Wilmet et al.,

F. Ohashi, T. Grasset, and . Uchikoshi, Extended study on electrophoretic deposition process of inorganic octahedral metal clusters: advanced multifunctional transparent nanocomposite thin films, Bull. Chem. Soc. Jpn, vol.91, p.1763, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01997969

K. Kirakci, S. Cordier, and C. Perrin, Synthesis and characterization of Cs 2 Mo 6 X 14 (X = Br or I) hexamolybdenum cluster halides: efficient Mo 6 cluster precursors for solution chemistry syntheses, Z. Anorg. Allg. Chem, vol.631, p.411, 2005.

J. Warnan, Y. Pellegrin, E. Blart, and F. Odobel, Supramolecular light harvesting antennas to enhance absorption cross-section in dye-sensitized solar cells, Chem. Commun, vol.48, p.675, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02143146

A. Nattestad, A. J. Mozer, M. K. Fischer, Y. Cheng, A. Mishra et al., Highly efficient photocathodes for dye-sensitized tandem solar cells, Nat. Mater, vol.9, p.31, 2010.

A. Renaud, B. Chavillon, L. Cario, L. L. Pleux, N. Szuwarski et al., Origin of the Black Color of NiO Used as Photocathode in pType Dye-Sensitized Solar Cells, J. Phys. Chem, vol.117, p.22478, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00980496

A. Nattestad, M. Ferguson, R. Kerr, Y. Cheng, and U. Bach, Dye-sensitized nickel(II) oxide photocathodes for tandem solar cell applications, Nanotechnology, vol.19, pp.295304-295305, 2008.

E. A. Gibson, A. L. Smeigh, L. L. Pleux, L. Hammarström, F. Odobel et al., J. Phys. Chem. C, vol.115, p.9772, 2011.

L. J. Guggenberger and A. W. Sleight, Structural and bonding characterizations of molybdenum dibromide, Mo 6 Br 12 .2H 2 O, Inorg. Chem, vol.8, p.2041, 1969.

H. Schafer, B. Plautz, H. Plautz-;-x-·-2h-2-o-mit-me, =. Mo, and W. Cl, Die dihydrate, Z. anorg. allg. Chem, vol.389, p.57, 1972.

A. Delices, J. Zhang, M. Santoni, C. Dong, F. Maurel et al.,

M. Hagfeldt and . Jouini, New covalently bonded dye/hole transporting material for better charge transfer in solid-state dye-sensitized solar cells, Electrochimica Acta, vol.269, p.163, 2018.

L. Wei, L. Jiang, S. Yuan, X. Ren, Y. Zhao et al., Valence band edge shifts and charge-transfer dynamics in Li-doped NiO based p-type DSSCs, Electrochimica Acta, vol.188, p.309, 2016.

A. Carella, R. Centore, F. Borbone, M. Toscanesi, M. Trifuoggi et al., Tuning optical and electronic properties in novel carbazole photosensitizers for p-type dye-sensitized solar cells, Electrochimica Acta, vol.292, p.805, 2018.

J. P. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al.,

J. Jacobsson, A. R. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate et al.,

M. Nazeeruddin, A. Grätzel, and . Hagfeldt, Highly efficient planar perovskite solar cells through band alignment engineering, Energy Environ. Sci, vol.8, p.2928, 2015.