R. G. Mitton, Mechanical properties of leather fibres, J. Int. Soc. Leather Trades Chem, vol.29, pp.169-194, 1945.

R. G. Mitton, Tensile properties and their variability in chrome-tanned calfskin, J. Soc. Leather Trades Chem, vol.32, pp.310-323, 1948.

J. Lin, D. R. Hayhurst, I. C. Howard, and D. C. Reedman, Modeling of the performance of leather in a uniaxial shoe-last simulator, J. Strain Anal. Eng. Des, vol.27, pp.187-196, 1992.

K. Makho, The effect of different parameters on the rupture properties of leather in a tensile test, Master thesis, Faculty of Science, 1998.

A. M. Manich, M. D. De-castellar, B. Gonzalez, M. H. Ussman, and A. Marsal, Influence of leather stretching to gain area yield on its stressrelaxation behavior, J. Appl. Polym. Sci, vol.102, pp.6000-6008, 2006.

P. G. Bison, E. Grinzato, and S. Marinetti, Leather characterisation by IR thermography, Proceedings of the Society of the Photo-Optical Instrumentation Engineers (SPIE), vol.5782, pp.359-370, 2005.

M. P. Luong, Evaluation of the limit of acceptable damage for leather products using infrared thermography, Nondestructive Evaluation of Aging Materials and Composites III, Proc. SPIE, vol.3585, pp.84-95, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00116560

M. P. Luong, Evaluating a limit of acceptable damage for leather products, Progress in Mechanical Behavior of Materials (ICM8), vol.2, pp.523-528, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00116550

M. P. Luong, Infrared thermography of damage evaluation in leather products, Proceedings of the Society of the Photo-Optical Instrumentation Engineers (SPIE), vol.3687, pp.191-200, 1999.

A. Chrysochoos and J. C. Dupré, Experimental analysis of thermomechanical coupling by infra-red thermography, pp.540-543, 1991.

K. H. Meyer and C. Ferri, Sur l'élasticité du caoutchouc, Helv. Chim. Acta, vol.18, pp.570-589, 1935.

L. R. Treloar, The elasticity and related properties of rubbers, Rep. Prog. Phys, vol.36, pp.755-826, 1973.

P. Chadwick, Thermo-mechanics of rubberlike materials, Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci, vol.276, pp.371-403, 1974.

A. Chrysochoos, Analyse du comportement des matériaux par thermographie infrarouge, vol.95, pp.203-211, 1995.

A. Chrysochoos and H. Louche, An infrared image processing to analyse the calorific effects accompanying strain localization, Int. J. Eng. Sci, vol.38, pp.1759-1788, 2000.

J. R. Samaca-martinez, J. B. Le-cam, X. Balandraud, E. Toussaint, and J. Caillard, Mechanisms of deformation in crystallizable natural rubber. Part 1: thermal characterization, Polymer, vol.54, pp.2727-2736, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01131576

J. R. Samaca-martinez, J. B. Le-cam, X. Balandraud, E. Toussaint, and J. Caillard, Filler effects on the thermomechanical response of stretched rubbers, Polym. Test, vol.32, pp.835-841, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01136540

J. R. Samaca-martinez, J. B. Le-cam, X. Balandraud, E. Toussaint, and J. Caillard, New elements concerning the Mullins effect: a thermomechanical analysis, Eur. Polym. J, vol.55, pp.98-107, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063256

X. Balandraud and J. B. Le-cam, Some specific features and consequences of the thermal response of rubber under cyclic mechanical loading, Arch. Appl. Mech, vol.84, pp.773-788, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01005745

L. Cam, J. B. Samaca-martinez, J. R. Balandraud, X. Toussaint, E. Caillard et al., Thermomechanical analysis of the singular behavior of rubber: entropic elasticity, reinforcement by fillers, strain-induced crystallization and the Mullins effect, Exp. Mech, vol.55, pp.771-782, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01658072

L. Cam and J. B. , Energy storage due to strain-induced crystallization in natural rubber: the physical origin of the mechanical hysteresis, Polymer, vol.127, pp.166-173, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619285

L. Cam and J. B. , Strain-induced crystallization in rubber: a new measurement technique, Strain, vol.54, p.12256, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695571

A. Chrysochoos, H. Pham, and O. Maisonneuve, Energy balance of thermoelastic martensite transformation under stress, Nucl. Eng. Des, vol.162, pp.1-12, 1996.

X. Balandraud, E. Ernst, and E. Soos, Rheological phenomena in shape memory alloys. Comptes-Rendus de l'Académie des Sciences -Série II Fascicule B Mécanique Physique Astronomie, vol.327, pp.33-39, 1999.

X. Balandraud, E. Ernst, and E. Soos, Relaxation and creep phenomena in shape memory alloys. Part II: stress relaxation and strain creep during phase transformation, Z. Angew. Math. Phys, vol.51, pp.419-448, 2000.

X. Balandraud, E. Ernst, and E. Soos, Relaxation and creep phenomena in shape memory alloys. Part I: hysteresis loop and pseudoelastic behavior, Z. Angew. Math. Phys, vol.51, pp.171-203, 2000.

C. Bubulinca, X. Balandraud, M. Grédiac, S. Stanciu, and M. Abrudeanu, Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation, J. Mater. Sci, vol.49, pp.701-709, 2014.

V. Delobelle, D. Favier, H. Louche, and N. Connesson, Determination of local thermophysical properties and heat of transition from thermal fields measurement during drop calorimetric experiment, Exp. Mech, vol.55, pp.711-723, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01300519

D. Delpueyo, X. Balandraud, M. Grédiac, S. Stanciu, and N. Cimpoesu, A specific device for enhanced measurement of mechanical dissipation in specimens subjected to long-term tensile tests in fatigue, Strain, vol.54, p.12252, 2017.

A. Benaarbia, A. Chrysochoos, and G. Robert, Kinetics of stored and dissipated energies associated with cyclic loadings of dry polyamide 6.6 specimens, Polym. Test, vol.34, pp.155-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00957767

A. Benaarbia, A. Chrysochoos, and G. Robert, Influence of relative humidity and loading frequency on the PA6.6 cyclic thermomechanical behavior: Part I. Mechanical and thermal aspects, Polym. Test, vol.40, pp.290-298, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077283

A. Benaarbia, A. Chrysochoos, and G. Robert, Thermomechanical behavior of PA6.6 composites subjected to low cycle fatigue, Composites Part B-Eng, vol.76, pp.52-64, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01060991

A. Benaarbia, A. Chrysochoos, and G. Robert, Influence of relative humidity and loading frequency on the PA6.6 thermomechanical cyclic behavior: part II. Energy aspects, Polym. Test, vol.41, pp.92-98, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01077283

A. Benaarbia, A. Chrysochoos, and G. Robert, Fiber orientation effects on heat source distribution in reinforced polyamide 6.6 subjected to low cycle fatigue, J. Eng. Math, vol.90, pp.13-36, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01095173

P. Jongchansitto, C. Douellou, I. Preechawuttipong, and X. Balandraud, Comparison between 0D and 1D approaches for mechanical dissipation measurement during fatigue tests, strain, 2018.

S. Giancane, A. Chrysochoos, V. Dattoma, and B. Wattrisse, Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy, Theorerical Appl. Fracture Mech, vol.52, pp.117-121, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00534280

T. Boulanger, A. Chrysochoos, C. Mabru, and A. Galtier, Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels, Int. J. Fatigue, vol.26, pp.221-229, 2004.

X. G. Wang, V. Crupi, C. Jiang, E. S. Feng, E. Guglielmino et al., Energy-based approach for fatigue life prediction of pure copper, Int. J. Fatigue, vol.104, pp.243-250, 2017.