G. S. Nolas, J. Yang, and H. Takizawa, Transport properties of germanium-410 filled CoSb, vol.3, pp.5210-5212, 2004.

X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, W. B. Zhang et al., Syn-412 thesis and thermoelectric properties of Sr-filled skutterudite Sr y Co 4 Sb, vol.12, p.413

, J. Appl. Phys, vol.99, p.53711, 2006.

G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer et al.,

P. Mallik, In-doped multifilled n-type skutterudites with ZT=1, vol.8, p.416

, Acta Mater, vol.95, pp.201-211, 2015.

J. Gainza, F. Serrano-sánchez, J. Prado-gonjal, N. M. Nemes, and N. Biskup, , p.418

O. J. Dura, J. L. Martínez, F. Fauth, and J. A. Alonso, Substantial thermal con-419 ductivity reduction in mischmetal skutterudites Mm x Co 4 Sb 12 prepared un-420 der high-pressure conditions, due to uneven distribution of the rare-earth 421 elements, J. Mater. Chem. C, vol.7, pp.4124-4131, 2019.

K. Wojciechowski, J. Tobola, and J. Leszczynski, Thermoelectric properties and 423 electronic structure of CoSb 3 doped with Se and Te, J. Alloys Compd, vol.361, pp.19-27, 2003.

J. Mi, X. Zhao, T. Zhu, and J. Ma, Thermoelectric properties of skutterudites, p.426

, Fe x Ni y Co 1?x?y Sb 3 (x=y), J. Alloys Compd, vol.452, pp.225-229, 2008.

Y. Lan, A. J. Minnich, and G. Chen, Z. Ren, Enhancement of Thermoelectric, vol.428

, Bulk Nanostructuring Approach, vol.429, issue.20, pp.357-376, 2010.

X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng et al., , p.431

, Grain Boundary Engineering for Achieving High Thermoelectric Perfor-432 mance in n-Type Skutterudites, Adv. Energy Mater, vol.7, p.1602582, 2017.

G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu et al., , p.434

M. Y. Tang, M. S. Dresselhaus, and G. Chen, Z. Ren, Enhanced Thermoelectric, p.435

, Merit in Nanostructured p-type Silicon Germanium Bulk Alloys

L. Yang, Z. G. Chen, M. Hong, G. Han, and J. Zou, Enhanced Thermoelectric 438 Performance of Nanostructured Bi 2 Te 3 through Significant Phonon Scat-439 tering, ACS Appl. Mater. Interfaces, vol.7, pp.23694-23699, 2015.

C. Recknagel, N. Reinfried, P. Höhn, W. Schnelle, H. Rosner et al., , p.441

A. Leithe-jasper, Application of spark plasma sintering to the fabrication of 442 binary and ternary skutterudites, Sci. Tech. Adv. Mater, vol.8, pp.357-363, 2007.

V. Trivedi, M. Battabyal, P. Balasubramanian, G. M. Muralikrishna, and P. ,

R. Jain and . Gopalan, Microstructure and doping effect on the enhancement 445 of the thermoelectric properties of Ni doped Dy filled CoSb 3 skutterudites, p.446

, Sustain. Energ. Fuels, vol.2, pp.2687-2697, 2018.

G. Rogl, A. Grytsiv, R. Anbalagan, J. Bursik, M. Kerber et al., Direct SPD-processing to achieve high-ZT skut-449 terudites, Acta Mater, vol.159, pp.352-363, 2018.

L. Guo, G. Wang, K. Peng, Y. Yan, X. Tang et al., , p.451

X. Zhou, Melt spinning synthesis of p-type skutterudites: Drastically speed 452 up the process of high performance thermoelectrics, Scipta Mater, vol.116, pp.26-30, 2016.

S. Lee, K. H. Lee, Y. Kim, H. S. Kim, G. J. Snyder et al., , p.455

, Simple and efficient synthesis of nanograin structured single phase filled 456 skutterudite for high thermoelectric performance, Acta. Mater, vol.142, 2018.

E. Godlewska, K. Mars, and K. Zawadzka, Alternative route for the preparation 459 of CoSb 3 and Mg 2 Si derivatives, J. Solid State Chem, vol.193, pp.109-113, 2012.

F. Gucci, T. G. Saunders, and M. J. Reece, In-situ synthesis of n-type un-461 filled skutterudite with reduced thermal conductivity by hybrid flash-spark 462 plasma sintering, Scripta Mater, vol.157, pp.58-61, 2018.

L. Kong, X. Jia, Y. Zhang, B. Sun, B. Liu et al., Structure and thermoelectric 468 properties of In x Ba y Co 4 Sb 12 samples prepared by HPHT, J. Alloys Compd, vol.469, pp.477-481, 2017.

A. Sesselmann, G. Skomedal, H. Middleton, and E. Müller, , p.471

, Synthesis Procedure on the Microstructure and Thermoelectric Proper-472 ties of p-Type Skutterudite Ce 0.6 Fe 2 Co 2 Sb 12, J. Electron. Mater, vol.45, pp.473-1397, 2015.

M. S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini et al., , p.475

C. Gatti, Y. Zang, M. Rowe, and M. Muhammed, The impact of nanostruc-476 turing on the thermal conductivity of thermoelectric CoSb 3, Adv. Funct

. Mater, , vol.14, pp.1189-1196, 2004.

Y. Li, C. Li, B. Wang, W. Li, and P. Che, A comparative study on the thermo-479 electric properties of CoSb 3 prepared by hydrothermal and solvothermal 480 route, J. Alloys Compd, vol.772, pp.770-774, 2019.

K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan et al.,

M. G. Dravid and . Kanatzidis, High-performance bulk thermoelectrics with all-483 scale hierarchical architectures, Nature, vol.489, pp.414-418, 2012.

X. Meng, Z. Liu, B. Cui, D. Gin, H. Geng et al., , p.485

J. Sui, Grain Boundary Engineering for Achiving High Thermoelectric Per-486 formance in n-Type Skutterudite, Adv. Energy Mater, vol.7, pp.642-651, 2017.

W. Li, J. Wang, Y. Xie, J. L. Gray, J. J. Heremans et al., , p.488

S. T. Huxtable and S. Priya, Enhanced thermoelectric performance of Yb-489 single-filled skutterudite by ultralow thermal conductivity, Chem. Mater, vol.490, pp.862-872, 2019.

E. Alleno, E. Zehani, and O. Rouleau, Metallurgical and thermoelectric prop-520 erties in Co 1?x Pd x Sb 3 and Co 1?x Ni x Sb 3 revisited, J. Alloys Compd, vol.572, pp.43-48, 2013.

E. Alleno, E. Zehani, M. Gaborit, V. Orodniichuk, B. Lenoir et al., , p.523

, Mesostructured thermoelectric Co 1?y M y Sb 3 (M = Ni, Pd) skutterudites, vol.524

, Alloys Compd, vol.692, pp.676-686, 2017.

T. He, J. Chen, H. D. Rosenfeld, and M. A. Subramanian, Thermoelectric prop-526 erties of indium-filled skutterudites, Chem. Mater, vol.18, pp.759-762, 2006.

R. C. ,

J. Y. Mallik, S. C. Jung, I. H. Ur, and . Kim, Thermoelectric properties of, p.528

, Met. Mater. Int, vol.12, pp.223-228, 2008.

J. Leszczynski, V. D. Ros, B. Lenoir, A. Dauscher, C. Candolfi et al., Mass-530 chelein, p.531

E. Müller, Electronic band structure, magnetic, transport and thermody-532 namic properties of In-filled skutterudites In x Co 4 Sb 12, J. Phys. D: Appl

, Phys, vol.46, p.495106, 2013.

R. C. Mallik, C. Stiewe, G. Karpinski, R. Hassdorf, and E. Müller, Thermoelec-535 tric properties of Co 4 Sb 12 skutteurdite materials with partial In filling and 536 excess In additions, J. Electron. Mater, vol.38, pp.1337-1339, 2009.

G. Li, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Thermoelectric prop-538 erties on Indium-added skutteurdites In X Co 4 Sb 12, J. Electron. Mater, vol.42, pp.1463-1468, 2013.

E. Visnow, C. P. Heinrich, A. S. Boor, P. Leidich, B. Klobes et al.,

W. E. Hermann, W. Müller, and . Tremel, On the true Indium content on In-filled 542 skutterudites, Inorg. Chem, vol.54, pp.7818-7827, 2015.

J. Rodriguez-carvajal, Recent advances in magnetic-structure determina-544 tion by neutron powder diffraction, Physica B, vol.192, pp.55-69, 1993.

D. G. Mandrus, A. Migliori, T. W. Darling, M. F. Hundley, and E. J. Peterson, , p.549

J. D. Thompson, Electronic transport in lightly doped CoSb 3, Phys. Rev. B, vol.550, pp.4926-4931, 1995.

M. Christensen, B. B. Iversen, L. Bertini, C. Gatti, and M. Toprak, , p.552

M. Muhammed and E. Nishibori, Structural study of Fe doped and Ni substi-553 tuted thermoelectric skutterudites by combined synchrotron and neutron 554 powder diffraction and ab inition theory, J. Appl. Phys, vol.96, p.3148, 2004.

W. Zhao, P. Wei, Q. J. Zhang, H. Peng, W. T. Zhu et al., , p.557

H. Y. Zhou, Z. Y. Liu, X. Mu, D. Q. He, J. C. Li et al., , p.558

J. H. Yang, Multi-localization transport behaviour in bulk thermoelectric 559 materials, Nat. Commun, vol.6, p.6197, 2015.

A. Grytsiv, P. Rogl, H. Michor, E. Bauer, and G. Giester, In y Co 4 Sb 12 Skutteru-561 dite: Phase Equilibria and Crystal Structure, J. Electron. Mater, vol.42, pp.2940-2952, 2013.

G. Champion, J. Allenou, M. Pasturel, H. Noël, F. Charollais et al., , p.564

X. Iltis and O. Tougait, Magnesiothermic Reduction Process Applied to the 565

, Powder Production of U(Mo) Fissile Particles, Adv. Eng. Mater, vol.15, 2013.

K. Choi, H. Choi, H. Na, and I. Sohn, Effect of magnesium on the phase equi-568 libria in magnesio-thermic reduction of Nb 2 O 5, Mater. Lett, vol.183, 2016.

C. Won, H. Nersisyan, and H. Won, Titanium powder prepared by a rapid 571 exothermic reaction, Chem. Eng. J, vol.157, pp.270-275, 2010.

H. J. Ellingham, Reducibility of oxides and sulfides in metallurgical 573 processes, J. Soc. Chem. Ind, vol.63, pp.125-160, 1944.

R. C. Sharma, T. L. Ngai, and Y. A. Chang, The In-Sb (Indium-Antimony) sys-575 tem, Bull. Alloy Phase Diagrams, vol.10, pp.657-664, 1989.

G. Rogl, A. Grytsiv, P. Rogl, E. Royanian, E. Bauer et al., , p.577

E. Schafler and M. Zehetbauer, Dependence of thermoelectric behaviour on 578 severe plastic deformation parameters: A case study on p-type skutteru-579 dite DD 0.60 Fe 3 CoSb 12, Acta. Mater, vol.61, pp.6778-6789, 2013.

L. Yang, J. Wu, and L. Zhang, Synthesis of filled skutterudite compound, p.581

, 75 Fe 3 CoSb 12 by spark plasma sintering and effect of porosity on ther-582 moelectric properties, J. Alloys Compd, vol.364, pp.83-88, 2004.

J. Friedel, Dislocations, 1964.
URL : https://hal.archives-ouvertes.fr/hal-00145192

Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, Thermoelectric prop-585 erties of CoSb 3, J. Alloys Compd, vol.315, pp.193-197, 2001.

J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin, and B. C. Sales, Thermo-587 electric properties of CoSb 3 and related alloys, J. Appl. Phys, vol.78, pp.1013-1018, 1995.

H. Kitagawa, M. Wakatsuki, H. Nagaoka, H. Noguchi, and Y. Isoda, , p.590

K. Hasezaki and Y. Noda, Temperature dependence of thermoelectric prop-591 erties of Ni-doped CoSb 3, J. Phys. Chem. Solid, vol.66, pp.1635-1639, 2005.

A. Sesselmann, B. Klobes, T. Dasgupta, O. Gourdon, and R. Hermann, , p.593

E. Müller, Neutron diffraction and thermoelectric properties of in-594 dium filled In x Co 4 Sb 12 (x=0.05, 0.2) and indium cerium filled

, Ce 0.05 In 0.1 Co 4 Sb 12 skutterudites, Phys. Stat. Sol. A, vol.213, pp.766-773, 2016.

E. Alleno, D. Berardan, C. Byl, C. Candolfi, R. Daou et al., , p.597

, A round robin test of the uncertainty on the measurement of the thermo-600 electric dimensionless figure of merit of Co 0.97 Ni 0.03 Sb 3, Rev. Sci. Instrum, vol.601, p.11301, 2015.

E. Alleno, L. Chen, B. Chubilleau, O. Lenoir, M. Rouleau et al., , p.603

B. Villeroy, Thermal Conductivity Reduction in CoSb 3 -CeO 2 Nanocompos-604 ites, J. Electron. Mater, vol.39, pp.1966-1970, 2010.

A. Khan, M. Saleemi, M. Johnsson, L. Han, N. Nong et al., , p.606

M. Toprak, Fabrication, spark plasma consolidation, and thermoelectric 607 evaluation of nanostructured CoSb 3, J. Alloys Compd, vol.612, p.293, 2014.

Q. He, Q. Hao, X. Wang, J. Yang, Y. Lan et al., , p.610

G. Joshi, D. Wang, and G. Chen, Z. Ren, Nanostructured Thermoelectric Skut, p.611

, terudite Co 1?x Ni x Sb 3 Alloys, J. Nanosci. Nanotechnol, vol.8, p.4003, 2008.

M. Benyahia, V. Ohorodniichuk, E. Leroy, A. Dauscher, B. Lenoir et al., , p.614

, High thermoelectric figure of merit in mesostructured In 0.25 Co 4 Sb 12 n-type 615 skutterudite, J. Alloys Compd, vol.735, pp.1096-1104, 2018.

C. W. Nan and R. Birringer, Determining the Kapitza resistance and the ther-617 mal conductivity of polycrystals: A simple model, Phys. Rev. B, vol.14, 1998.

H. S. Yang, G. Bai, L. Thompson, and J. Eastman, Interfacial thermal resistance 620 in nanocrystalline yttria-stabilized zirconia, Acta Mater, vol.50, pp.2309-621, 2002.

G. A. Slack, Design Concepts for Improved Thermoelectric Materials, MRS 623 Proceedings, vol.478, p.47, 1997.