A. Hirano-iwata, K. Aoto, A. Oshima, T. Taira, R. Yamaguchi et al., Free-Standing Lipid Bilayers in Silicon Chips?Membrane Stabilization Based on Microfabricated Apertures with a Nanometer-Scale Smoothness, Langmuir, vol.26, pp.1949-1952, 2010.

N. J. Yang and M. J. Hinner, Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins, Methods Mol. Biol. Clifton NJ, vol.1266, pp.29-53, 2015.

D. Papahadjopoulos, S. Nir, and S. Oki, Permeability properties of phospholipid membranes: effect of cholesterol and temperature, Biochim. Biophys. Acta, vol.266, pp.561-583, 1972.

F. M. Ashcroft, From molecule to malady, Nature, vol.440, pp.440-447, 2006.

J. S. Munaretto, L. Yonkos, and D. S. Aga, Transformation of ionophore antimicrobials in poultry litter during pilot-scale composting, Environ. Pollut. Barking Essex, vol.212, pp.392-400, 1987.

S. N. Graven, S. Estrada-o, and H. A. Lardy, Alkali metal cation release and respiratory inhibition induced by nigericin in rat liver mitochondria, Proc. Natl. Acad. Sci, vol.56, pp.654-658, 1966.

L. K. Steinrauf, M. Pinkerton, and J. W. Chamberlin, The structure of nigericin, Biochem. Biophys. Res. Commun, vol.33, pp.29-31, 1968.

M. Thompson and U. J. Krull, The electroanalytical response of the bilayer lipid membrane to valinomycin: membrane cholesterol content, Anal. Chim. Acta, vol.141, pp.33-47, 1982.

M. C. Rose and R. W. Henkens, Stability of sodium and potassium complexes of valinomycin, Biochim. Biophys. Acta BBA -Gen. Subj, vol.372, pp.90204-90213, 1974.

E. T. Castellana and P. S. Cremer, Solid supported lipid bilayers: From biophysical studies to sensor design, Surf. Sci. Rep, vol.61, pp.429-444, 2006.

J. Vacek, M. Zatloukalova, J. Geleticova, M. Kubala, M. Modriansky et al., Electrochemical Platform for the Detection of Transmembrane Proteins Reconstituted into Liposomes, Anal. Chem, vol.88, pp.4548-4556, 2016.

S. Maher, H. Basit, R. J. Forster, and T. E. Keyes, Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity, Bioelectrochemistry, vol.112, pp.16-23, 2016.

E. Lebègue, H. Smida, T. Flinois, V. Vié, C. Lagrost et al., An optimal surface concentration of pure cardiolipin deposited onto glassy carbon electrode promoting the direct electron transfer of cytochrome-c, J. Electroanal. Chem, vol.808, pp.286-292, 2018.

F. Melin and P. Hellwig, Recent advances in the electrochemistry and spectroelectrochemistry of membrane proteins, Biol. Chem, vol.394, pp.593-609, 2013.

R. L. Naumann, C. Nowak, and W. Knoll, Proteins in biomimetic membranes: promises and facts, vol.7, pp.9535-9548, 2011.

E. Lebègue, R. O. Louro, and F. Barrière, Electrochemical Detection of pH-Responsive Grafted Catechol and Immobilized Cytochrome c onto Lipid Deposit-Modified Glassy Carbon Surface, ACS Omega, vol.3, pp.9035-9042, 2018.

O. Gutiérrez-sanz, D. Olea, M. Pita, A. P. Batista, A. Alonso et al., Reconstitution of respiratory complex I on a biomimetic membrane supported on gold electrodes, Langmuir ACS J. Surf. Colloids, vol.30, pp.9007-9015, 2014.

G. Herlem, B. Lakard, M. Herlem, and B. , Fahys, pH Sensing at Pt Electrode Surfaces Coated with Linear Polyethylenimine from Anodic Polymerization of Ethylenediamine, J. Electrochem. Soc, vol.148, p.435, 2001.

A. Talaie, Conducting polymer based pH detector: A new outlook to pH sensing technology, Polymer, vol.38, 1997.

A. Deronzier and J. Moutet, Polypyrrole films containing metal complexes: syntheses and applications, Coord. Chem. Rev, vol.147, pp.339-371, 1996.

T. Komura, M. Ishihara, T. Yamaguchi, and K. Takahashi, Charge-transporting properties of electropolymerized phenosafranin in aqueous media, J. Electroanal. Chem, vol.493, pp.84-92, 2000.

C. Dai, L. P. Crawford, P. Song, A. C. Fisher, and N. S. Lawrence, A novel sensor based on electropolymerized substituted-phenols for pH detection in unbuffered systems, RSC Adv, vol.5, pp.104048-104053, 2015.

S. Mu, Synthesis of poly(aniline-co-5-aminosalicylic acid) and its properties, Synth. Met, vol.161, pp.1306-1312, 2011.

A. Eriksson and L. Nyholm, A Comparative Study of the Oxidation of 3-, 4-and 5-Aminosalicylic Acids at Glassy Carbon Electrodes, Electroanalysis, vol.10, pp.198-203, 1998.

R. K. Palsmeier, D. M. Radzik, and C. E. Lunte, Investigation of the degradation mechanism of 5-aminosalicylic acid in aqueous solution, Pharm. Res, vol.9, pp.933-938, 1992.

D. Evans, J. P. Hart, and G. Rees, Voltammetric behaviour of salicylic acid at a glassy carbon electrode and its determination in serum using liquid chromatography with amperometric detection, The Analyst, vol.116, p.803, 1991.

A. Torriero, J. M. Luco, L. Sereno, and J. Raba, Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid, Talanta, vol.62, pp.247-254, 2004.

H. Allgayer, J. Sonnenbichler, W. Kruis, and G. Paumgartner, Determination of the pK values of 5-aminosalicylic acid and N-acetylaminosalicylic acid and comparison of the pH dependent lipidwater partition coefficients of sulphasalazine and its metabolites, Arzneimittelforschung, vol.35, pp.1457-1459, 1985.

T. Smith, The hydrophilic nature of a clean gold surface, J. Colloid Interface Sci, vol.75, pp.51-55, 1980.

J. R. Gardner and R. Woods, The hydrophilic nature of gold and platinum, J. Electroanal. Chem. Interfacial Electrochem, vol.81, pp.285-290, 1977.

S. A. Paniagua, P. J. Hotchkiss, S. C. Jones, S. R. Marder, A. Mudalige et al., Phosphonic Acid Modification of Indium?Tin Oxide Electrodes: Combined XPS/UPS/Contact Angle Studies, J. Phys. Chem. C, vol.112, pp.7809-7817, 2008.

S. Lin, C. Lin, J. Jhang, and W. Hung, Electrodeposition of Long-Chain Alkylaryl Layers on Au Surfaces, J. Phys. Chem. C, vol.116, pp.17048-17054, 2012.

W. Zheng, R. Du, Y. Cao, M. Mohammad, S. Dew et al., Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays, Sensors, vol.15, pp.18724-18741, 2015.

E. Lebègue, T. Brousse, J. Gaubicher, and C. Cougnon, Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions, Electrochimica Acta, vol.88, pp.680-687, 2013.

J. J. Hickman, D. Ofer, P. E. Laibinis, G. M. Whitesides, and M. S. Wrighton, Molecular Self-Assembly of Two-Terminal, Voltammetric Microsensors with Internal References, Science, vol.252, pp.688-691, 1991.

G. Wildgoose, M. Pandurangappaa, N. S. Lawrence, L. Jiang, T. G. Jones et al., Anthraquinone-derivatised carbon powder: reagentless voltammetric pH electrodes, Talanta, vol.60, pp.887-893, 2003.

H. Leventis, I. Streeter, G. G. Wildgoose, N. S. Lawrence, L. Jiang et al., Derivatised carbon powder electrodes: reagentless pH sensors, Talanta, vol.63, pp.1039-1051, 2004.

I. Streeter, H. Leventis, G. Wildgoose, M. Pandurangappa, N. Lawrence et al., A sensitive reagentless pH probe with a ca. 120 mV/pH unit response, J. Solid State Electrochem, vol.8, 2004.

T. R. Silva, E. Valdman, B. Valdman, and S. G. Leite, Salicylic acid degradation from aqueous solutions using Pseudomonas fluorescens HK44: parameters studies and application tools, Braz. J. Microbiol, vol.38, pp.39-44, 2007.

S. Collado, L. Garrido, A. Laca, and M. Diaz, Wet Oxidation of Salicylic Acid Solutions, Environ. Sci. Technol, vol.44, pp.8629-8635, 2010.

D. R. Lide, CRC handbook of chemistry and physics, 2003.

S. R. Miller, D. A. Gustowski, Z. C. Chen, G. W. Gokel, L. Echegoyen et al., Rationalization of the unusual electrochemical behavior observed in lariat ethers and other reducible macrocyclic systems, Anal. Chem, vol.60, pp.2021-2024, 1989.

P. D. Beer, Redox Responsive Macrocyclic Receptor Molecules Containing Transition Metal Redox Centres, Chem. Soc. Rev, vol.18, pp.409-450, 1988.

F. Barrière and W. E. Geiger, Use of Weakly Coordinating Anions to Develop an Integrated Approach to the Tuning of ?E1/2 Values by Medium Effects, J. Am. Chem. Soc, vol.128, pp.3980-3989, 2006.

M. Inabayashi, S. Miyauchi, N. Kamo, and T. Jin, Conductance Change in Phospholipid Bilayer Membrane by an Electroneutral Ionophore, Monensin, Biochemistry, vol.34, pp.3455-3460, 1995.

S. Maher, H. Basit, R. J. Forster, and T. E. Keyes, Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity, Bioelectrochemistry, vol.112, pp.16-23, 2016.

G. Stark, B. Ketterer, R. Benz, and P. Läuger, The Rate Constants of Valinomycin-Mediated Ion Transport through Thin Lipid Membranes, Biophys. J, vol.11, pp.86272-86272, 1971.

C. Steinem, A. Janshoff, K. Dem-bruch, K. Reihs, J. Goossens et al., Valinomycinmediated transport of alkali cations through solid supported membranes, Bioelectrochem. Bioenerg, vol.45, pp.17-26, 1998.