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A B S T R A C T 
The zwitterion ligand L1 has been synthesized and characterized by single-crystal X-ray 
diffraction, and spectroscopic techniques (1H, 13C NMR, FT-IR, ESI-MS, and UV-Vis). The 
crystal structure shows that L1 molecules are planar and are connected via intermolecular N-
H----O and intramolecular N-H----O interactions. The NMR analysis shows the presence of 
two mesomeric forms of L1: zwitterion and ketone-imidazolidine. The kinetic study of in situ 
complexes is followed by UV-vis spectroscopy and revealed a binuclear structure built from 
square base pyramidal geometry and octahedral one. In situ complexes obtained from L1 with 
different copper (II) salts are studied for their catecholase activities using 3,5-di-tert-
butylcatechol. The obtained 3,5-di-tert-butylquinone was characterized by single-crystal X-
ray diffraction,. The results show that the catalytic activity depends on the nature of the metal 
salt anion. From Michaelis-Menten model, we have evaluated the dissociation constant and 
the bond constant which are in good agreement with those of literature. The structure-activity 
relationship show that the high rate of catalytic oxidation depends on the presence of copper 
ion in the complex.  
  
 
Keywords: Imidazole derivative; X-Ray; Zwetterionic form; Catechol oxidase 
 
1. Introduction 

  
Imidazole are of particular chemical and extensively studied molecules due to their 
applications as complexing agents [1, 2].They not only represent an important class of 
pharmaceutical compounds [3, 4], but also known for their biological activities [5] and 
environmental applications[6, 7]. Imidazole derivatives like Imidazoline containing phenyl 
hydroxyl group have attracted the interest of chemists because of its applications [8-11] and 
tautomeric forms such as zwitterions. This zwitterionic form occurs by a proton transfer from 
ortho-hydroxy group to the nitrogen whose stability increase through the interactions between 
opposite charges [12].  
Imidazole is known as model of the active site of catecholase function, and presents an 
important interest of the zwitterions ligand. Imidazole-based zwitterionic-type molten salt 
have been explored as a new class of organocatalyst in various chemical transformations. 
[13]. 
Considerable amount of studies are focused on the synthesis of complexes with several 
nitrogen containing ligands designed to model catecholase [14-17]. Their catalytic activity has 
been investigated as in situ complexes [18, 19] or isolated complexes [20, 21]. Many of these 
studies concentrate on dinuclear complexes [17, 22], but also mononuclear complexes are also 
studied in the literature [23]. The properties of mono and binuclear Cu (II) complexes have 
also been compared [24, 25], the rates of catechol oxidation were found to be dependent on 
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ligand type. As a result, studies have reported the use of in situ copper (II) complexes of 
Schiff base derivatives to produce catecholase activity [26].  
In the present work, we report the synthesis of the 2-(1H-Imidazolin-2-yl)phenol, the 
crystalline structure of zwitterions L1 and its characterization by spectroscopic methods and 
single-crystal X-ray diffraction. Then, we study the catalytic activity of the in situ copper-
imidazole complex (CuL1) towards the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC). 
Finally, we discuss the structure-activity relationship. 
 
2. Experimental 
 
2.1. Materials and Physical measurements 

Ethylene diamine, phenylsalicylate, dithertiobutyl catechol, Cu(AcO)2.H2O, Cu(NO3)2, 
CuCl2 and CuSO4 (Aldrich) were used as purchased. High-grade solvents (methanol, ethanol, 
dimethylformamide) were used without further purification. 

IR spectra were measured in the 400-4000 cm-1 range on a 9800 FTIR spectrometer 
(Perkin–Elmer) where samples were run as KBr pellets. Kinetic measurements were made 
spectrophotometrically using a UV-Vis UV-1650 PC Shimadzo spectrophotometer. The X-
ray data was collected on a diffractometer APEXII, Bruker-AV III equipped with a graphite 
monochromator Mo-Kα radiation ((λ = 0.71073Å). The 1H NMR (300 MHz) and 13C (300 
MHz) NMR spectra were recorded on a Bruker 300 spectrometer. Chemical shifts are listed in 
ppm and are reported relatively to tetramethylsilane using the methanol-d4 solvent. The 
deuterated methanol is identified by 1H and 13C peaks at 3.34 ppm and 47.6 ppm respectively. 
Mass analysis was done on a spectrometer LC/MSD-TOF 1969A dual source equipped with a 
lock spray (ESI-MS). 
 
2.2. Synthesis of 2-(4,5-dihydro-1H-imidazol-3-ium-2-yl)phenolate, phenol : L1 
[2(C9H10N2O),C6H5OH] 

Equimolar quantities of ethylenediamine 10-2 mol (0.6 g) and phenylsalicylate 10-2 
mol (2.14 g) were mixed and vigorously stirred at 110 °C under oil bath for 5 h. Brown 
crystals suitable for X-ray diffraction analysis was obtained after slow evaporation of the L1 
solution (2 (C9H10N2O), C6H5OH). Mp: 244 °C. 
1H NMR (300 MHz, CD3OD), δ (ppm): 3.91 (s, 4H, N-CH2-CH2-N); 4.93 (s, O-H); 6,49 (t, 
1H); 6.53 (d, 2H); 6.47 (d, 1H); 6.75 (d, 1H); 6.80 (t, 2H); 7.15 (m, 1H); 7.28 (m, 1H, N-H); 
7,44 (d, 1H, N-H) ppm. 13C NMR (300 MHz, CD3OD), δ (ppm): 172.18 (Ar.-C1), 166.80 
(C6H5-C8 imidazole), 157.02 (Ar.-C 13), 135.07 (Ar. C15, C17), 129.07 (Ar.-C3), 128.29 
(Ar.-C4), 122.7 (Ar.-C2), 119.71 (Ar.-C5), 119.08 (Ar.-C16), 113.54 (Ar.-C6), 107.09 (Ar.-
C14, C18),  43.54 (ImdCH2 , C10) and (ImdCH2, C11) ppm. Selected IR bands (KBr pellet, 
cm-1): 3400 (O-H); 1264 (O-H); 1400 (ArC=C) 764 (ArC-H); 3420-3480 (imidazoleN-H); 1616 
(imidazoleC=N). MS (ESI) m/z: [M+H]+ 163. 
. 
 
2.3. Crystallographic data collection for L1  

The crystallographic measurements of L1 was performed on APEXII Bruker-AXS 
diffractometer equipped with an Oxford Cryosystem Open-flow nitrogen cryostat, using a 
graphite-monochromated MoKα radiation (λ  = 0.71073 Å) at 150 K. 
The structure was solved by direct methods using the SIR97 program [27], and then refined 
with full-matrix least-square methods based on F2 (SHELXL-97) [28] with the aid of the 
WINGX [29] program. All non-hydrogen atoms were refined with anisotropic atomic 
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displacement parameters. The C-bonded hydrogen atoms were positioned geometrically and 
refined using a riding model, whereas nitrogen and oxygen linked hydrogen atoms were 
introduced in the structural model through Fourier difference maps analysis. A final 
refinement on F2 with 4659 unique intensities and 295 parameters converged at ωR(F2) = 
0.0992 (R(F) = 0.0383) for 3904 observed reflections with I > 2σ(I). Details of the crystal 
data, data collection and refinement process are listed in Table 1. 
 
2.4. Catecholase activity measurements 

The formation of 3,5-di-tert-butylquinone (3,5-DTBQ, λmax = 400 nm and ε = 1900 
M-1 cm -1) was carried out by four complexes (Cu(AcO)2/L1, Cu(SO4)/L1, CuCl2/L1and 
Cu(NO3)2/L1) formed in situ at 25 °C in methanol in presence of air, from acetate, sulfate, 
chloride and nitrate  metal salts. The manipulations are performed on different solutions: the 
concentration of complex is equal to 10-4 mol.L-1 and that of 3,5-DTBC varies from 10-2 to 
7.10-2 mol.L-1 (ie 100 to 700 equivalents to the complex).  An equimolar mixture of metal salt 
(CuX2, nH2O: X = CH3COO- , SO4

2-, Cl- and NO3
-, n = 1, 0, 2 and 5 respectively) and ligand 

L1 is pooled with 3,5-DTBC to catalyze its oxidation [30]. Also, experiments of the rate 
dependence on substrate concentration in the absence of catalyst were performed at the same 
concentration conditions. The values obtained were subtracted from those obtained in the 
presence of catalysts. 
 
3. Results and discussion  
 
3.1. Proposed reaction pathway  
 The synthesis of 2-(1H-Imidazolin-2-yl) phenol has been widely reported by the 
authors in the literature [31-34]. In this work, we have realized this condensation reaction 
between ethylenediamine and phenyl salicylate. At high temperature, the double condensation 
onto the diamine does not occur. The formation of imidazoline is realized in three steps: i) 
substitution of phenol with ethylenediamine, ii) followed by autocyclisation iii) and 
elimination of water. After evaporation, we have obtained the crystal of ligand L1.  
 The progressive evaporation of water molecules promotes the crystallization of L1 in 
its most stable tautomer form ketone-imidazolidine. After total elimination of water, the last 
form is changed by transferring the proton from phenol to imine and adopts the zwitterionic 
form. We propose the following mechanism given in Scheme 1. 
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Scheme 1. Proposed reaction pathway for obtaining of zwitterionic imidazole crystal L1. 

 
3.2. Crystallographic studies of L1  
 The main crystal parameters are reported in Table 1. Structure of L1 with numbering 
scheme is illustrated in Fig. 1. L1 is crystallized in a triclinic space group P-1 and with a two 
unit per cell (Z=2).  The structure of L1 is build by an asymmetric unit containing one phenol 
molecule and two phenol-imidazole molecules. The carbon atoms (C31 and C10) in the 
imidazole rings are nearly coplanar with the largest deviations from the middle plan being 
0.0942(13) Å for C31 and 0.0807(13) Å for C10 (Fig1.). 
 The phenol-imidazole molecule is relatively planar. Therefore, for the C27-C28 and C7-
C2 bonds, the atom pairs (N32/C22, C28/C27) and (O1/C8, C2/C7) are all cis, shown by the 
torsion angle values of 1.27(16)° for C22-C27-C28-N32 and 2.84 (14)° for O1-C2-C7-C8, 3.50 
(16)°. As consequence, this entity adopts Z configuration (Fig.1).  
 From the data analysis, we note that the imidazole ring shows two characteristic 
situations of the five-membered rings. Consequently, the geometry revealed that endocyclic 
angles vary from 103.40(9)° to 112.02(9)° assigned respectively to N9-C10-C11 and  C8-N12-
C11.  While the exocyclic angles are obtuse smallest being 117.7(11)° for  C28-N32- H32 and 
the largest 131.1(10)° for C11-N12-H12 (Fig.1). Our results are in good agreement with those of 
literature [35].  
 The crystal structure of ligand L1 is determined by different inter and intra molecular 
interactions which are given in Table 2. These are considered as a competition between short 
inter and inter molecular N–H…O (and O-H…O) interactions and long-range intermolecular 
H–N…O (and H-O…O) interactions. Thus, these interactions influence the geometry of this 
crystal. 
 From figure 2, we observe that the three molecules in L1 (one phenol and two phenol-
imidazole) are combined to form a π-stacked staircase arrangement. Thus, the structure o L1 
is stabilized by five hydrogen bonds: i) two H bonds an intramolecular interaction: N12-
H12…O1 and N32-H32…O21 (O1phenolate…H-N1imd) (entries 2 and 4, Table 2), ii) two 
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intermolecular H bonds: N9-H9…O21 and N29-H29…O1 (O1phenolate…H-N2imd) (entries 1 and 3, 
Table 2) and iii) one intermolecular H bond: O41-H41…O21 (Ophenolate…H-O-Ar) (entry 5, 
Table 2).  
 In the L1 structure, the N–H…O hydrogen bonds (N9-H9…O21 = 1.875 Å, N12-H12-O1 
= 1.843 Å, N29-H29…O1 = 1.826 Å, N32-H32-O21 = 1.903 Å) and Ar-O–H…O H bond (O41-
H41…O21 = 1.744 Å) organize molecules into a three-dimensional sample, and the H-N…O 
interactions (H-N9…O21 = 2.795 Å, H-N12…O1 = 2.585 Å, H-N29…O1 = 2.730 Å, H-N32…O21 
= 2.621 Å) with H-O…O interaction (H-O41…O21 = 2.672 Å) confirm the strong of the L1 
crystal architecture (Fig. 2). 
 The displacement of protons from phenolic oxygen to the nitrogen atom of imidazole 
generates the zwitterionic phenolate form (Scheme 1) and proves it presence in the crystal L1 
(Fig.1). Thus, the amine hydrogen participate in a strong intramolecular hydrogen bond with 
the phenolate oxygen atom and generate an R (6) ring motif. These two six-membered 
pseudocycles are approximately planar. The cohesion of the crystal L1 is realized by the 
presence of intermolecular hydrogen bonds (NH…Ophenolate) and produces a graph-set motif 
C2

2 (3) (Fig.2). 
 Moreover, the phenol molecules are located between two layers of imidazoles. As a 
result, they contribute to the formation of a three-dimensional network by the hydrogen bonds 
O41-H41…O21 (Fig. 2.). From figure 2, we estimated the centroid-centroid and the slippage 
distances of phenol-phenol which are respectively 3.5635(7) Å and 3.2995(5) Å (Fig. 2). 
 
 

 
 
Fig. 1. An ORTEP reptesentation of L1 crystal with atom numbering scheme and 50% 
probability ellipsoids for all non hydrogen atoms. 
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Fig. 2. Packing view of L1 crystal. Intramolecular hydrogen bonds showing the formation of 
R(6) rings with dashed blue lines (N-H…O). Intermolecular hydrogen bonds are shown as 
blue dashed lines (N-H…O and Ar-O-H…O). H-N…O interactions are dashed in red lines. 
 
Table 1 Crystallographic data for and structure refinement parameters for L1 

Empirical formula C24 H26 N4 O3 

Extended formula 2(C9 H10 N2 O), C6 H6 O 

Formula weight 418.49 
Crystal system, space group triclinic, P  -1 
Temperature (K) 150(2) K 
a, b, c (Å) 8.517(6), 11.666(7), 11.872(8) 
α, β, γ  (°) 103.961(2), 109.139(3), 101.178(3)  
V (Å3) 1032.59(12) 
Z 2 
Radiation type Mo-Kα 
Μ (mm-1) 0.091  
Crystal size (mm) 0.58 x 0.53 x 0.34  
  
Data collection  
Diffractometer APEXII, Bruker-AXS  
Absorption correction Multi-scan (SADABS Bruker;  Sheldrick, (2002) 
Tmin, Tmax 0.926, 0.970 
No. of measured, independent and observed 
[I >  
2_(I)] reflections 

14886, 4659, 3904  

Rint 0.027 
(sin θ/λ)max (Å  -1) 0.985 
  
Refinement  
R[F2> 2σ (F2)], wR(F2), S 0.038, 0.099, 1.03 
No. of reflections 4659 
No. of parameters 295 
No. of restraints 0 
H-atom treatment H atoms treated by a mixture of independent and constrained 

refinement 
∆ρmax, ∆ρmin (e

-.Å-3) 0.237,  -0.257 
 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

Table 2 Hydrogen bonds for L1 
 Hydrogen bonds  Distances (Å) Angles lenghts (°) 

Entry D -H…A d(D -H) d(H…A) d(D…A) <DHA> 
1 N9 - H9…O21

i 0.933 (17) 1.875 (17) 2.795 (12) 168.6 (15) 
2 N12-H12…O1 0.918 (17) 1.843 (17) 2.585 (13) 136.3 (14) 
3 N29 - H29…O1 0.909 (17) 1.826 (18) 2.730 (12) 173.315 
4 N32 - H32…O21 0.904 (17) 1.903 (17) 2.621 (12) 134.9 (14) 
5 O41 - H41…O21

ii  0.929 (17) 1.744 (17) 2.672 (11) 177.3 (15) 
Symmetry codes: i) 1+x, y, 1+z; (ii) 1+x, y, z  

 
3.2. NMR spectroscopy and tautomerisation mechanism of 2-(1H-Imidazolin-2-yl)phenol 

 The 2D structures are drawn with Chemdraw software. Phenol-imidazole and phenol 
molecules are shown in Scheme.1 with 2D numbering system adopted in this study. 

The 1H NMR spectrum of single crystal L1 is represented on Fig. S1. The phenolic 
protons are identified at 4.94 ppm. The aromatic protons of the phenol appear at: 6.53 ppm for 
C14-H14 and C18-H18, 6.80 ppm for C15-H15 and C17-H17 and 6.49 ppm for C16-H16. The 
aromatic protons of the ligand appear at 6.47 pm for C6-H6, 6.75 ppm for C3-H3 and 7.15 ppm 
for C4-H4 and C5-H5.The imidazole ring is characterized by two types of peak: C10-H10 and 
C11-H11 at 3.90 ppm and N-H and N-H protons at 7.44 and 7.42 ppm respectively which is 
due to an environmental difference of the two nitrogen atoms (Scheme 2). Our results agree 
very well with those of literature [33].  

The 13C NMR spectrum of single crystal L1 is represented on Fig. S2. These data 
shows: i) first signal appears at 172.18 ppm which is attributed to the carbonyl carbon (C1) in 
the ketone-imidazolidine form; ii) signals from 107 to 157 ppm are attributed to the aromatic 
nuclei carbons. The imidazole carbon atoms (CH2, C10 and C11) appear at 43.54 ppm and the 
cyclic imine carbon (C8) at 166.80 ppm which justifies the formation of this ligand. 
 In solution and with solvent interaction, the zwitterionic form disappears and gives the   
2-(4,5-dihydro-1H-imidazol-2-yl)phenol 1a,b which can quickly change its isomeric form to 
phenol-imidazole by tautomerization in ketone-imidazolidine form (6-(imidazolidin-2-
ylidene)cyclohexa-2,4-dienone 3) by hydrogen transfer from phenol to imine nitrogen through 
intramolecular hydrogen bonding via a chelate intermediate 2. 

 In deuterated methanol (CD3OD), the 2-(4,5-dihydro-1H-imidazol-2-yl)phenol 1a,b 
and the 6-(imidazolidin-2-ylidene)cyclohexa-2,4-dienone 3 are in equilibrium between the 
two tautomer forms. The ratio of these tautomers is depending specially on the solvent, 
temperature and pH. We propose the following tautomerisation mechanism given in Scheme 
2. 
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Scheme 2. Proposed keto-enolic tautomerisation mechanism in solution. 

3.3. UV/Vis L1 spectrophotometry of L1 
 The figure 3 shows that the first and the second absorption bands in Nujol are higher 
than in methanol. Therefore, the first band at 240-260 nm is due to a π→π*  electron transition 
of the aromatic ring. The second band at 300-330 nm corresponds to a π→π*  transition 
involving the π-electrons of the imidazole and phenol groups. 
 From Figure 3, we note that the third 330-400 nm absorption band of Nujol is more 
intense than that at 330-370 nm of methanol. This reveals the presence of the ketone-
imidazolidine and phenol-imidazole forms respectively. The Nujol third band decreases 
slowly indicating predominance of the corresponding ketone-imidazolidine form. The two 
curves reach a maximum at 250 nm which confirms the existence of two distinct tautomer 
forms in the UV/Vis spectrum of L1. These results indicate that the tautomerization occurs 
rapidly at the higher energy region (330-400 nm). Thus, we attribute that to the ketone-
imidazolidine tautomer stabilized by intramolecular hydrogen bond (due to ketone-
imidazolidine tautomer) and intermolecular hydrogen bonds (between phenol and ketone-
imidazolidine tautomer, and phenol-imidazole/ketone-imidazolidine tautomers) of L1 
(Scheme 2). 
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Fig.3. Absorption spectra of L1 in Nujol and in methanol. 
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3.4. Catalytic activity studies  
 
3.4.1. Effect of the nature of the anion 

The kinetic study was performed according to the mode described in section 2.4. 
Results of kinetic study are reported in Table 3. These values show high velocities for catalyst 
prepared with copper acetate salt, compared to sulfate, nitrate and chloride. This is related to a 
geometric structure created by the molecules of these salts and specially the acetate group 
around the copper center which can promote or prevent 3,5-DTBC approach to the catalyst, 
which is in agreement with the literature [18]. 
  
Table 3 Oxidation rates (µmol.L-1.min-1) of 3,5-DTBC with in situ complex (Cu/L1)  

Copper salt 
[3,5-DTBC] 

10-2 2. 10-2 3. 10-2 4. 10-2 5. 10-2 6. 10-2 7. 10-2 
Cu(CH3COO)2 11.15 10.89 11.74 12.57 11.96 12.23 13.31 

CuSO4 4.89 4.87 5.84 6.52 6.07 6.19 7.13 
Cu(NO3)2 1.27 0.99 1.5 2.08 2.07 2.10 3.10 

CuCl2 1.593 1.07 1.302 1.49 1.20 1.31 1.71 
 
 The Rate values in literature show high speed values for isolate complex (1.93 µmol 
L−1 min−1) [20]. We have obtained good result with our in situ complex CuL1 (derived from 
copper acetate and ligand L1) compared to those of the literature [18, 20, 26]. In addition, L1 
ligand is composed from two planar phenol-imidazole molecules and one phenol molecule.  
 
3.4.2. Study of in situ complex structure and oxidation reaction of 3,5- DTBC  

First, we have studied the structure of in situ complex. The formation of the in situ 
complex of copper (II) was followed by the measurement of UV-visible absorption for 1 h. 
An equimolar mixture (10-4 mol) of ligand L1 and of copper (II) acetate was brought together 
in methanol. The progressive reaction gives two bands at 325 nm and 390 nm compared to the 
spectrum of the free ligand L1 (Fig.4a). These bands are attributed to ligand-metal charge 
transfer [36]. While two new bands appear at 570 nm and 725 nm (Fig.4b) which indicate 
respectively the presence in situ of binuclear specie around two copper centers: a distorted 
square pyramidal and a distorted octahedral respectively [30, 37]. 
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Fig. 4. UV/Vis analysis for the in situ complex formation of L1 with copper (II) acetate over time: a) 

(300-600) nm; b) (500-800) nm. 
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 Second, we have determined the catecholase activity by the same in situ complex. The 
evolution of the oxidation reaction of 3,5-DTBC by the in situ complex is justified by the 
presence of the 3,5-DTBQ (Q) band at 410 nm (Fig. 5). From these results, we conclude that 
the structure of in situ complex L1 remains unchanged during the catechol oxidation.    
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Fig. 5. UV/Vis analysis of the 3,5-DTBC oxidation by in situ complex L1 with copper (II) acetate over 
time. 
 
 The Q crystal of 3,5-DTBQ is illustrated in Figure. 6. Q is crystallized in a triclinic 
space group P-1 and with a two unit per cell (Z=2). The structure of Q is build by an 
asymmetric unit containing one water molecule and three 3,5-di-tert-butylquinone molecules.  

 
Fig. 6. An ORTEP representation of Q crystal with 50% probability ellipsoids for all non 
hydrogen atoms. 
 
3.4.3. Michaelis-Menten kinetics 

The catalytic activity of a complex can be evaluated by determining the kinetic 
parameters of the oxidation reaction. Thus, oxidation rates were determined by the initial rate 
method then analyzed with Michaelis-Menten model which is commonly used in enzymatic 
catalysis [38, 39]. Parameters for the oxidation reaction were determined. The oxidation 
reaction in the presence and absence of the catalyst, were carried out under the same 
concentration conditions described in section 2.4. The velocity values obtained in the absence 
of the catalyst are subtracted from those in their presence. Figure 7 shows the Michaelis-
Menten plots of the 3,5-DTBC oxidation reaction catalyzed by in situ complex CuL1 
(obtained from Cu(AcO)2 and L1). Table 4 summarizes the results of this study.  
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Fig.7. Kinetic study of the 3,5-DTBC oxidation by in situ CuL1 complex. 

 The kinetic model of in situ complex follows the simple Michaelis-Menten 
mechanism. The plot 1 / [v] = f 1 / [3,5-DTBC] gives a straight line from which the complex-
substrate dissociation constant (Kcat) and the Michaelis bond constant (Km) are evaluated. As 
indicated in Table 4, the in situ complex CuL1 shows a higher activity Vmax = 1.61. 10-5 
mol.min-1L-1 and Kcat = 9,64 h-1, which is related to nature of bonds formed in the in situ 
complex.  
 The literature shows a wide range of examples of catecholase activity, the most active 
of which are binuclear complexes [40, 44].  The Kcat value 9,64 h−1 observed from CuL1 
proves the capacity of this complex for the catalytic oxidation of 3,5-DTBC, which is in some 
cases similar or even superior to some dinuclear [20, 45]. 
 
Table 4. Kinetic parameters of 3,5-DTBC oxidation with in situ CuL1 complex  

In situ Complex Copper salt Vmax (M.mn -1) K cat (h
-1) KM (M) K cat / KM (h-1. M -1) 

CuL1 Cu(AcO)2 1,61. 10-5 9,66 0,48 x 10-2 20,12x 102 
 
3.4.4. Structure-activity relationship 

 
 We have also studying the action of the free ligand L1 on the 3,5-DTBC. In Figure 8, 
we have plotted the evolution of 3,5-DTBC oxidation in the presence of in situ acetate copper 
complex CuL1 and the synthesized ligand L1. Comparing the two curves, we note that the 
CuL1 catalyst is 186 times more active than the ligand L1. Figure 8 shows an almost zero 
absorbance versus time in the absence of the catalyst under the same experimental conditions. 
Consequently, we confirm that 3,5-DTBC does not undergo oxidation in the absence of the 
copper catalyst and the ligand L1 alone does not allow oxidation. The oxidation rates are 
given in Table 5. 
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Fig. 8. Comparative study of 3,5-DTBC catalytic oxidation by the ligand and the corresponding 
complex. 
 
Table 5 Oxidation rates (µmol L-1 min-1) of 3,5-DTBC with ligand L1 and in situ CuL1 complex. 
 

Compound In situ CuL1Complex Ligand L 1 
Rate 11.15 0.06 

 
 A comparative study between the catalytic activities of in situ complexes and 
complexes with those of the literature showed that the ligand geometry has strong influence 
on their catalytic efficiency [18, 20]. The geometry structure promotes the formation of a 
complex that does not present steric hindrance and facilitates the 3,5-DTBC approach and its 
oxidation [46]. 
 
4. Conclusion 
 We have synthesized the imidazole-derived ligand L1 which was characterized by 
single crystal X-ray diffraction, and by spectroscopic techniques (1H, 13C NMR, FT-IR, ESI-
MS, and UV-Vis). The asymmetric unit contains one phenol molecule and two imidazole 
phenolate molecules. Angle analysis justify that the molecules are practically planar and are 
connected via intermolecular and intramolecular hydrogen bonds forming zigzag chains 
layers. From NMR analysis, we have shown that equilibrium is created between the tautomers 
of L1: zwitterion and ketone-imidazolidine forms.  
 The oxidation of 3,5-DTBC to the corresponding ortho-quinone was carried out via 
the in situ copper (II) complex. The formation of 3,5-DTBQ characterized by single crystal X-
ray diffraction attested the ability of in situ complex to promote catechol oxidation. We have 
shown that the catalytic activity of our complex is influenced by the salt structure and by the 
steric and electronic effects of the ligand. The study of the structure-activity relationship show 
that the high rate of catalytic oxidation depends on the presence of copper ion in the complex.  
 We conclude that our in situ CuL1 complex can be considered as a good catalyst 
compared to some mononuclear or binuclear copper in situ or isolated complexes of the 
literature.  
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