S. Louhibi, A. Nour, L. Vendier, J. Costes, and J. Tuchagues, Polynuclear 3d complexes based on potentially tetra-anionic heptadentate ligands including amido, amino and phenoxo donors: Synthesis, crystal structure and magnetic properties, Polyhedron, vol.26, pp.3448-3454, 2007.

K. S. Ashish, K. Prashant, Y. Mahendra, and S. P. Daya, Synthesis, characterisation and theoretical studies on some piano-stool ruthenium and rhodium complexes containing substituted phenyl imidazole ligands, J. Organomet. Chem, vol.695, pp.567-573, 2010.

M. C. Rodriguez-argüelles, S. Mosquera-vazquez, J. Sanmartin-matalobos, A. M. Garcia-eibe, C. Pelizzi et al., Evaluation of the antimicrobial activity of some chloro complexes of imidazole-2-carbaldehyde semicarbazone: X-ray crystal structure of cisNiCl 2 (H 2 L)(H 2 O), Polyhedron, vol.29, pp.864-870, 2010.

J. Dietrich, V. Gokhale, X. Wanga, L. Hurley, and G. Flynn, Application of a novel [3+2] cycloaddition reaction to prepare substituted imidazoles and their use in the design of potent DFG-out allosteric B-Raf inhibitors, Bioorg. Med. Chem, vol.18, pp.292-304, 2010.

P. Nshimyumukiza, E. Van-den, B. Berge, T. Delest, R. Mijatovic et al., Synthesis and biological evaluation of novel imidazole-containing macrocycles, Tetrahedron, vol.66, pp.4515-4520, 2010.

G. Monod, A. Mones, and A. Fostier, Inhibition of ovarian microsomal aromatase and follicular oestradiol secretion by imidazole fungicides in Rainbow trout, Mar. Environ. Res, vol.35, pp.153-157, 1993.

G. Monod, H. Rime, J. Bob, and B. Jalabert, Agonistic effect of imidazole and triazole fungicides on in vitro oocyte maturation in rainbow trout (Oncorhynchus mykiss), Mar. Environ. Res, vol.58, pp.143-146, 2004.

P. Ernsberger, J. E. Friedman, and R. J. Koletsky, The I1-imidazoline receptor: from binding site to therapeutic target in cardiovascular disease, J. Hypertens. Suppl, vol.15, pp.9-23, 1997.

D. Bajpai and V. K. Tyagi, Synthesis and characterization of imidazolinium surfactants derived from tallow fatty acids and diethylenetriamine, Eur. J. Lipid Sci. Technol, vol.110, pp.935-940, 2008.

K. Kamaraj, E. Kim, B. Galliker, L. N. Zakharov, A. L. Rheingold et al., Copper(I) and copper(II) complexes possessing cross-linked Imidazolephenol ligands: Structures and dioxygen reactivity, J. Am. Chem. Soc, vol.125, pp.6028-6029, 2003.

Y. Yoshida, N. Aoyagi, and T. Endo, Substituent dependence of imidazoline derivatives on capture and release system of carbon dioxide, New J. Chem, vol.41, pp.14390-14396, 2017.

M. H. Habibi, E. Shojaee, M. Ranjbar, H. R. Memarian, A. Kanayama et al., Computational and spectroscopic studies of a new Schiff base 3-hydroxy-4-methoxybenzylidene(2-hydroxyphenyl)amine and molecular structure of its corresponding zwitterionic form, Spectrochim. Acta A, vol.105, pp.563-568, 2013.

S. Das, S. Santra, P. Mondal, A. Majee, and A. Hajra, Zwitterionic imidazolium salt: Recent advances in organocatalysis, Synthesis, vol.48, pp.1253-1420, 2016.

M. Merkel, M. , N. Möller, M. Piacenza, S. Grimme et al., Less symmetrical dicopper(II) complexes as catechol oxidase models-an adjacent thioether group increases catecholase activity, Chem. Eur. J, vol.11, pp.1201-1209, 2005.

I. A. Koval, P. Gamez, C. Belle, K. Selmeczi, and J. Reedijk, Synthetic models of the active site of catechol oxidase: mechanistic studies, Chem. Soc. Rev, vol.35, pp.814-840, 2006.

Y. Thio, X. Yang, and J. J. Vittal, Influence of inductive effects and steric encumbrance on the catecholase activities of copper(II) complexes of reduced Schiff base ligands, Dalton Trans, vol.43, pp.3545-3556, 2014.

A. Biswas, L. K. Das, M. G. Drew, C. Diaz, and A. Ghosh, Insertion of a Hydroxido bridge into a diphenoxido dinuclear copper(II) complex: Drastic change of the magnetic property from strong antiferromagnetic to ferromagnetic and enhancement in the catecholase activity, Inorg. Chem, vol.51, pp.10111-10121, 2012.

A. Mouadili, A. Attayibat, S. E. Kadiri, S. Radi, and R. Touzani, Catecholase activity investigations using in situ copper complexes with pyrazole and pyridine based ligands, Appl. Catal. A-Gen, vol.454, pp.93-99, 2013.

I. Bouabdallah, R. Touzani, I. Zidane, and A. Ramdani, -yl)methyl]benzylamine.: Catecholase activity of two series of tripodal ligands with some copper (II) salts, Synthesis of new tripodal ligand: N,N-bis, vol.8, pp.707-712, 2007.

R. Marion, N. M. Saleh, N. Le-poul, D. Floner, O. Lavastre et al., Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(II) complexes by introduction of non-coordinating groups in N-tripodal ligands, New J. Chem, vol.36, pp.1828-1835, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00843848

M. R. Mendoza-quijano, G. Ferrer-sueta, M. Flores-a´lamo, N. Aliaga-alcalde, V. Gomez-vidales et al., Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers, Dalton Trans, pp.4985-4997, 2012.

K. S. Banu, T. Chattopadhyay, A. Banerjee, S. Bhattacharya, E. Zangrando et al., Catechol oxidase activity of dinuclear copper(II) complexes of Robson type macrocyclic ligands: Syntheses, X-ray crystal structure, spectroscopic characterization of the adducts and kinetic studies, J. Mol. Catal. A: Chem, vol.310, pp.34-41, 2009.

M. Maiti, S. Sadhukhan, S. Thakurta, E. Zangrando, G. Pilet et al., Synthesis, structural characterization, theoretical calculations and catecholase mimetic activity of manganese-Schiff base complexes, Polyhedron, vol.75, pp.40-49, 2014.

M. R. Malachowski and M. G. Davidson, Novel mono-and binuclear Cu(II) complexes: synthesis, characterization and catecholase activity, Inorg. Chim. Acta, vol.162, pp.199-204, 1989.

V. K. Bhardwaj, N. Aliaga-alcalde, M. Corbella, and G. , Synthesis, crystal structure, spectral and magnetic studies and catecholase activity of copper(II) complexes with diand tri-podal ligands, Chim. Acta, vol.363, pp.97-106, 2010.

H. Boulemche, B. Anak, A. Djedouani, R. Touzani, M. François et al., Synthesis, X-ray crystallography, computational studies and catecholase activity of new zwitterionic Schiff base derivatives, J. Mol. Struct, vol.1178, pp.606-616, 2019.

A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo et al., SIR97: A new tool for crystal structure determination and refinement, J. Appl. Cryst, vol.32, pp.115-119, 1999.

G. M. Sheldrick, A short history of SHELX, Acta Cryst, vol.64, pp.112-122, 2008.

L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Cryst, vol.32, pp.837-838, 1999.

I. Belfilali, S. Louhibi, R. Mahboub, R. Touzani, S. E. Kadiri et al., Study of the histamine copper(II) chloride complex catalytic activity, Chem. Intermed, vol.41, pp.1819-1831, 2015.

A. Sapegin, A. Osipyan, and M. Krasavin, Structurally diverse arene-fused ten-membered lactams accessed via hydrolytic imidazoline ring expansion, Org. Biomol. Chem, vol.15, pp.2906-2909, 2017.

K. Karamysheva, E. Reutskaya, A. Sapegin, M. Dorogov, and M. Krasavin, Atomeconomical construction of tetracyclic [1,4]oxazepines involving intramolecular arylation of a 2-imidazoline moiety, Tetrahedron Lett, vol.56, pp.5632-5637, 2015.

Z. Gan, K. Kawamura, K. Eda, and M. Hayashi, Effect of ortho-substituents on the stereochemistry of 2-(o-substituted phenyl)-1H-imidazolineepalladium complexes, J. Organomet. Chem, vol.695, pp.2022-2029, 2010.

R. Mitsuhashi, T. Suzuki, and Y. Sunatsuki, Four-Electron Oxidative dehydrogenation induced by proton-coupled electron transfer in ruthenium(III) complex with 2-(1,4,5,6-tetrahydropyrimidin-2-yl)phenolate, Inorg. Chem, vol.52, pp.10183-10190, 2013.

I. Belfilali, S. Yebdri, S. Louhibi, L. Boukli-hacene, and T. Roisnel, Crystal structure of 2-(1H-imidazol-4-yl)-ethanaminium chloride, Acta Cryst, vol.71, pp.301-302, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01156435

K. S. Banua, T. Chattopadhyaya, and A. Banerjeea, Catechol oxidase activity of dinuclear copper(II) complexes of Robson type macrocyclic ligands: Syntheses, X-ray crystal structure, spectroscopic characterization of the adducts and kinetic studies, J. Mol. Catal. Chem, vol.310, pp.34-41, 2009.

U. Mukhopadhyay, L. Govindasamy, K. Ravikumar, D. Velmurugan, and D. Ray, Synthesis and structural characterization of a triply bridged copper(II)-zinc(II) Schiff base complex with N,O coordination, Inorg. Chem. Commun, vol.1, pp.152-154, 1998.

A. Granata, E. Monzani, and L. Casella, Mechanistic insight into the catechol oxidase activity by a biomimetic dinuclear copper complex, J. Biol. Inorg. Chem, vol.9, pp.903-913, 2004.

S. K. Mal, M. Mitra, H. R. Yadav, C. S. Purohit, A. R. Choudhury et al., Synthesis, crystal structure and catecholase activity of a vanadium(V) Schiff base complex, Polyhedron, vol.111, pp.118-122, 2016.

S. K. Dey and A. Mukherjee, Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies, Coord. Chem. Rev, vol.310, pp.80-115, 2016.

K. S. Banu, T. Chattopadhyay, A. Banerjee, S. Bhattacharya, E. Suresh et al., Catechol oxidase activity of a series of new dinuclear copper(II) complexes with 3,5-DTBC and TCC as substrates: Syntheses, X-ray crystal structures, spectroscopic characterization of the adducts and kinetic studies, Inorg. Chem, vol.47, pp.7083-7093, 2008.

P. A. Casellato, A. Vigato, M. Stefani, D. E. Vidali, and . Fenton, The preparation of binuclear complexes and their catalytic behaviour in the oxidation of 3,5-di-butycatechol, Inorg. Chim. Acta, vol.69, pp.45-51, 1983.

I. Koval, K. Schilden, A. M. Schuitema, P. Gamez, C. Belle et al., Proton NMR spectroscopy and magnetic properties of a solution-stable dicopper(II) complex bearing a single µ-hydroxo bridge, Inorg. Chem, vol.44, pp.4372-4382, 2005.

S. Sarkar, A. Sim, H. Kim, and . Lee, Catecholase activity of a self-assembling dimeric Cu(II) complex with distant Cu(II) centers, J. Mol. Catal. Chem, vol.410, pp.149-159, 2015.

P. Gentschev, N. Moller, and B. Krebs, New functional models for catechol oxidases, Inorg. Chim. Acta, vol.300, pp.442-452, 2000.

H. Keypour, M. Shayesteh, M. Rezaeivala, F. Chalabian, Y. Elerman et al., Zn(II) and Cd(II) complexes of a new potentially hexadentate N 2 O 4 Schiff base ligand derived from salicylaldehyde, J. Mol. Struct, vol.1032, pp.62-68, 2013.