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Purpose or Objective

One of the major issues in radiomics is the very large
amount of tested extracted features, compared to the
often-reduced sample size and the low number of events.
Reduction of dimensionality may be therefore an
important preliminary step to improve the prediction
capability of the predictive models. The aims of the study
were:

- to propose methods for reducing redundancy by selecting
the more informative features from -multimodal images;

- to evaluate and compare the prediction capability of the
models when using these methods.

The considered example was MRI based radiomics to
predict overall survival after SBRT for hepatocellular
carcinoma (HCC).

Material and Methods

Eighty-one patients underwent SBRT for inoperable HCC.
For each patient, 7 modalities of MR images were
acquired. A total of 273 features were extracted from
manually delineated tumours belonging to 4 radiomics
categories (geometrical, first order, gradient-based and
second order) in each modality. As we follow the workflow
[Figure 1]
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, a similarity measure based on Spearman correlation was
computed across the features. Four methods for feature
selection were then assessed namely three unsupervised
(K-means, Hierarchical clustering (HC) and Affinity
propagation (AP)) and a supervised (mRMR) clustering and
compared random selection (RS) and no selection (using
all the features). Affinity propagation clustering yields a
set of exemplars which better represented each cluster.
Finally, in order to assess the predictive capabilities of
each one of the feature selection method, a random forest
classifier was trained and tested via a stratified-K-fold
(K=19 the occurrence of decease event) cross-validation.
This process was repeated 1000 times. Feature importance
as assessed by aggregation of the performance at each try.
The performance is evaluated by computing the precision
(True positive / True positive + True negative) of
prediction.

Results

The table displays the selected predictive feature
depending on the selection methods. Unsupervised
clustering algorithms allowed to select a non-redundant
set of features able to significantly better predict HCC
overall survival [Exemplars from AP: Precision= 0.76 +
0.01, (p-value < 0.001)], in comparison to the other
methods [All features: Precision = 0.73 + 0.001; RS from
all features : Precision = 0.71 + 0.3 ; RS from K-means
clustering : Precision = 0.715 + 0.1; RS from HC: Precision
= 0.74 + 0.02; RS from AP clustering: Precision = 0.735 +
0.01 and exemplars from mRMR: Precision = 0.735 + 0.01]
. The most reproducible predictive features are related
with the shape of the tumour [Figure 2]
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Conclusion

A framework for feature selection in a radiomics workflow
is presented. Unsupervised methods allow to cluster
together groups of features increasing the prediction
capabilities and reducing redundancy. AP outperforms the
other features selection method suggesting the use of the
exemplars as representative feature of each cluster.
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