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Abstract – 246 words 

Objectives: This study aimed at re-evaluating the strength and shape of the dose-response 

relationship between the combined (or joint) effect of intensity and duration of cigarette smoking 

and the risk of head and neck cancer (HNC). We explored this issue considering bivariate spline 

models, where smoking intensity and duration were treated as interacting continuous exposures.  

Materials and Methods: We used individual-level pooled data from 33 case-control studies 

(18,260 HNC cases and 29,844 controls) participating in the International Head and Neck 

Cancer Epidemiology (INHANCE) consortium. In bivariate regression spline models, exposures 

to cigarette smoking intensity and duration (compared with never smokers) were modeled as a 

linear piecewise function within a logistic regression also including potential confounders. We 

jointly estimated the optimal knot locations and regression parameters within the Bayesian 

framework. 

Results: For oral-cavity/pharyngeal (OCP) cancers, an odds ratio (OR) >5 was reached after 30 

years in current smokers of ~20 or more cigarettes/day. Patterns of OCP cancer risk in current 

smokers differed across strata of alcohol intensity. For laryngeal cancer, ORs>20 were found for 

current smokers of ≥20 cigarettes/day for ≥30 years. In former smokers who quit ≥10 years ago, 

the ORs were approximately halved for OCP cancers, and ~1/3 for laryngeal cancer, as 

compared to the same levels of intensity and duration in current smokers.  

Conclusion: Referring to bivariate spline models, this study better quantified the joint effect of 

intensity and duration of cigarette smoking on HNC risk, further stressing the need of smoking 
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cessation policies. 

 

Keywords: bivariate spline models; cigarette smoking duration; cigarette smoking intensity; 

head and neck cancer; INHANCE; laryngeal cancer; oral cavity and pharyngeal cancers. 

 

Abbreviations: 

CI = credible interval  

HNC = head and neck cancer 

INHANCE = International Head and Neck Cancer Epidemiology  

NUTS = No-U-Turn Sampler 

OCP = oral cavity and pharynx  

ORs = odds ratios 

WAIC = Wanatabe-Akaike Information Criterion  

7

Acc
ep

ted
 m

an
us

cri
pt



 

Introduction 

In recent years, tobacco smoking has confirmed its role as the worldwide leading cause of 

preventable diseases and death. It is responsible for at least 12% of all deaths and of 22% of all 

cancer deaths worldwide [1]. Tobacco has been strongly associated with head and neck cancer 

(HNC, i.e., cancers of the oral cavity, pharynx, and larynx), which is the sixth most common 

cancer type, accounting for nearly 900,000 new cases in 2018 [2]. 

A dose-response relationship with HNC risk has been reported for smoking intensity 

(cigarettes per day reported during the exposure period) and duration (years of exposure), as 

well as for a cumulative smoking exposure measured in pack-years [3,4]. Compared with 

intensity, smoking duration was shown to provide a greater risk of developing HNC [5,6], as well 

as, other tobacco-related cancers, such as lung [7,8] and bladder cancers [9,10]. 

So far, the association between tobacco smoking and HNC risk was evaluated by considering 

duration and intensity as either separate or interacting predictors. In the latter case, the 

combined exposure was modeled as either cross-product or pack-years [6,11,12]. Step-functions 

[4, page 369] were widely used to provide risk estimates for the cross-product of the categorized 

exposures. This approach assumed a constant rate within each combined category of exposure; 

however, this assumption may have been too rough and/or leading to some efficiency loss [13-

15]. As an alternative, linear-exponential models estimated the excess odds ratio (OR) of HNC 

within models including pack-years and smoking intensity [6,9]. The pack-year approach was 

traditionally based on a strong assumption about the effects of smoking intensity and duration; 
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for instance, the effect of smoking ½ pack per day (10 cigarettes) for 40 years was equivalent to 

smoking 2 packs (40 cigarettes) per day for 10 years. Indeed, both of them reflect a cumulative 

exposure of 20 pack-years [16]. However, the 2 exposures were measured on different metrics. 

Bivariate spline models have the potential to provide a more realistic representation of the 

association between smoking intensity and duration and HNC risk [15]. First, they allow to model 

intensity and duration in their original scale of continuous exposures and, in this aspect, splines 

outperform step-function models. Second, the two exposures are allowed to determine disease 

risk in their separate or interacting role. Third, a non-linearity in the dose-response relationship 

may be modeled. 

This study re-evaluated the joint effect of intensity and duration of tobacco smoking on HNC 

risk, by means of bivariate spline models, within the International Head and Neck Cancer 

Epidemiology (INHANCE) consortium [11]. 

 

Materials and methods 

Data source 

The INHANCE consortium was established in 2004 to elucidate the etiology of HNC through 

pooled analyses of individual-level data from several studies on a large scale [11]. Several 

aspects of tobacco smoking and HNC risk have been previously investigated within the 

consortium [5,6,11,17-19]. 

From the INHANCE consortium pooled dataset (version 1.5), we extracted all the available 
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case-control studies (35 studies) that collected information on cigarette smoking status, intensity, 

and duration at individual level (http://www.inhance.utah.edu, last accessed March 25th, 2019). 

Available data were harmonized at the study coordinating center [11]. In all the studies, 

information on smoking history was self-reported. While different studies had used different 

definitions of smoking status, the current study defined as never smokers those individuals who 

never smoked regularly, or smoked for a very short period, i.e., less than a 12 months [11]; 

likewise, former smokers were defined as those who had abstained from any type of smoking 

since at least 12 months before cancer diagnosis (cases) or interview (controls).  

Details on individual studies, data harmonization, and pooling methods are summarized in 

eTable 1. Informed consent was obtained from all study subjects. The investigations were 

approved by the relevant Boards of Ethics, according to the regulation in force at data collection 

time. 

Selection of subjects 

The INHANCE protocol allowed inclusion of invasive cancer cases of the oral cavity, 

oropharynx, hypopharynx, oral cavity or pharynx not otherwise specified, larynx, or unspecified 

HNC. Cases with cancers of the salivary glands or of the nasal cavity/ear/paranasal sinuses 

were excluded [11]. The original study sample included 25,865 HNC cases and 37,248 controls, 

giving a total of 63,113 subjects. 

We conducted subjects’ selection according to the following main steps (eAppendix, text and 

Figure 1), excluding: 1. cases with unspecified (95 subjects) or overlapping HNC (331 subjects); 
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2. subjects reporting smoking tobacco products other than cigarettes (i.e., cigar, pipe, and 

cigarillo), to avoid risk distortion due their use [5] (6,255 subjects); 3. subjects with missing 

information on duration and/or intensity of cigarette smoking (1,897 subjects); 4. all subjects from 

studies that included only never (i.e., Japan 1988-2000) (822 subjects) or current (i.e., France 

1987-1992) smokers (457 subjects), after the previous selection steps. 

In order to prevent potential estimation distortion at the highest levels of the exposure 

distributions (due to small numbers of subjects or information bias in heavy tobacco consumers), 

further excluded were those subjects reporting the highest 5% of cigarette smoking intensity (>40 

cigarettes per day) or duration (>51 years) (14% HNC cases and 6% controls excluded). 

After all the described selection steps (eAppendix, text and Figure 1), the analysis included 33 

studies [20-53] with 48,104 subjects (18,260 HNC cases and 29,844 controls) (Table 1). When a 

study reported to have conducted a case-control matching, separate sets of controls were 

matched for oral cavity and pharynx (OCP) cancers combined and for laryngeal cancer cases. In 

detail, the analysis included: 5,423 cancers of the oral cavity; 6,261 pharyngeal cancer cases 

(4,648 oropharyngeal and 1,613 hypopharyngeal cancers cases); 1,633 unspecified oral 

cavity/pharynx cancers (giving a total of 13,317 OCP cancer cases combined), and 4,943 

laryngeal cancers. 

Statistical analysis 

The bivariate regression spline models [54] used to investigate the dose–response 

relationship between HNC and the joint exposure to smoking intensity and duration was 
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described extensively in eAppendix – Statistical Analysis and in Di Credico’s PhD Thesis [55]. 

We assumed a generalized semi-parametric logistic regression model where the two exposures 

were entered as a joined piecewise polynomial of a linear degree with constraints for continuity 

at each join point (called knot), together with potential confounders (i.e., age, sex, race, study, 

education, drinking status, drinking intensity, and drinking duration) [15]. Knots represented 

change points in the slope of the risk surface. The set of spline regression parameters described 

the shape of the risk surface. We further assumed that the knot locations for any of the two 

exposures were unknown parameters to be estimated, up to a maximum of 2 knots allowed for 

each exposure. At the maximum level of complexity, the risk surface was allowed to have 2 

change-points in the slope for any exposure and 9 different areas with a possibly changing slope. 

The optimal knot locations and regression parameters were jointly estimated within the 

Bayesian approach. Prior distributions expressed a priori knowledge on plausible values of knot 

locations and regression parameters [56,57]. Their posterior distribution combined prior 

information and available data through the Bayes theorem. A joint posterior distribution was 

simulated for each cancer site, smoking-status stratum (current/former smokers), and 

combination of number of knots using the NUTS (No-U-Turn Sampler) [58] algorithm. For each 

combination of site and stratum, the best model was selected among the convergent models with 

sensible knot locations (≤95th percentile of either exposures) as the one that minimized the 

Wanatabe-Akaike Information Criterion (WAIC) [59,60]. The optimal knot locations, the ORs, and 

their 95% credible intervals (CIs) were derived from the posterior distribution corresponding to 
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the best model. The ORs were presented through three-dimensional mesh plots that displayed 

the surface of risk for any combination of cigarette smoking intensity and duration, and through 

two-dimensional contour plots that showed iso-risk curves identifying the combinations of the two 

exposures with the same OR. Also explored were trade-offs between intensity and duration in 

two-dimensional contour plots by comparison of ORs for a fixed cumulative exposure (i.e., pack-

years). 

To evaluate potential modifying effects of the covariates, analyses were carried out in strata of 

alcohol drinking intensity (i.e., <1, 1-<5, ≥5 drinks per day) for current smokers, and years since 

quitting (i.e., <10, ≥10 years) for former smokers. Separate results for the risk of laryngeal cancer 

across alcohol drinking intensity strata were presented, due to absence of heterogeneity of the 

risk surfaces across strata for current smokers. As a comparison, risk estimates were further 

estimated according to the Bayesian step-function regression model.  

When possible, all the models were fitted with the full set of potential confounders shown in 

Table 1; moreover, ‘‘Never smokers’’ were assumed as the reference category. Calculations were 

carried out using the open-source Stan program [61] within the open-source R program [62,63]. 

 

Results 

Table 1 shows selected characteristics of cases and controls, according to the variables 

included in the models as potential confounders. Approximately 70% of the subjects were white. 

Studies from Europe contributed with approximately 44% of subjects; 31% of subjects were from 

13

Acc
ep

ted
 m

an
us

cri
pt



 

the United States, whereas the remaining ones were from Latin America (14%) and Asia (11%). 

Six studies provided only cases of OCP cancer. 

Table 2 shows the distribution of cigarette smoking habits for OCP cancer, laryngeal cancer, 

and controls. Never smokers were 21% of OCP and 7% of laryngeal cancers, versus 45% of 

controls. Current smokers were 66% of laryngeal cancer cases, 57% of OCP cancer cases, and 

26% of controls. The prevalence of former smokers was similar in cases and controls, but the 

percentage of subjects who quit cigarette smoking ≥10 years ago was ~52% among HNC cases 

and 72% among controls. 

Figure 2 shows the mesh and contour plots for cancers of the OCP and larynx among current 

cigarette smokers. Knot locations were indicated by thicker black lines; the intersections of the 

lines defined the areas where the risk surface had different slopes. For both cancer sites, the 

best model was characterized by one knot for duration (at 33 years for OCP cancer and 30 years 

for laryngeal cancer) and one knot for intensity (at 16 and 25 cigarettes/day, respectively). 

Smoking duration modified OCP cancer risk at any levels of intensity (Figure 2A). In contrast, for 

any duration up to 10 years, the ORs were always <2, regardless of the intensity of cigarette 

smoking. In addition, at a fixed value of 20 pack-years, an intensity of 40 cigarettes/day and a 

duration of 10 years led to an OR of ~2, whereas the OR was equal to ~4 with a duration of 40 

years in smokers of 10 cigarettes/day. 

For laryngeal cancer, ORs>20 were found for intensities of >20 cigarettes/day and durations 

of >28 years (Figure 2B). Moreover, ORs>10 of laryngeal cancer were reached by current 
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smokers of >20 cigarettes/day only when duration was >20 years; however, ORs>10 were not 

reached for any duration <15 years and any level of intensity. Finally, the OR was 6.2 for 

smokers of 40 cigarettes/day for 10 years, but it was higher (between 9 and 10) for 20 

cigarettes/day smoked for 20 years, or for 10 cigarettes/day smoked for 40 years. 

The shape of the risk surface and the values of the ORs were also very similar across major 

OCP cancer subsites  (i.e., oral cavity and oropharyngeal cancers) (eFigure 2). 

Figure 3 shows the joint effect of current smoking intensity and duration in strata of alcohol 

consumption. Among never drinkers (<1 drink/day), the shape of the risk surface was similar to 

the one presented for all alcohol intensities together (Figure 2A), but the ORs were generally 

lower; all the ORs were < 2 for durations ≤15 years and any intensity, whereas an OR>5 was 

observed only after ~25 years of duration or more (Figure 3A). However, the shape of the surface 

and/or the ORs of the joint effect of duration and intensity were different when light (Figure 3B) 

and heavy (Figure 3C) drinkers were considered. 

As a comparison, the ORs and their corresponding 95% CIs were estimated for each cancer 

site in current smokers within the Bayesian logistic regression model that assumed the presence 

of step functions (Table 3, main ORs). These estimates were compared with the range of OR 

estimates derived from the spline models for each joint category of duration and intensity (Table 

3, bracketed ORs). For both cancer sites, all Min-Max ranges included the OR estimates 

obtained from the Bayesian logistic regression, and this replication reassured that the spline 

model was valid. In addition, within the examined categories, the step-function intervals widely 
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overlapped with the Min-Max ranges of the ORs from the spline models, but failed to capture the 

ORs variability. For instance, for OCP cancer in current smokers of 26-40 cigarettes/day for 36-

51 years, the categorical OR was 8.4 (95% CI: 8.0-8.9), whereas the OR varied from 7.1 to 10.6 

under the spline model approach for the same combined category (Table 3). The same pattern 

emerged at any combination of duration and intensity for both cancer sites for former smokers 

who quit ≥10 years ago (eTable 2).  

Among former smokers who quit ≥10 years ago, no ORs>4 were observed for OCP cancer 

(Figure 4A), and the ORs were approximately halved, as compared to the same levels of 

duration and intensity in current smokers (Figure 2A). A mean risk reduction of 2/3 was also 

found for laryngeal cancer in long-term former smokers, with ORs declines that varied from 1/3 to 

4/5 depending on the different combinations of intensity and duration (Figure 4B). These 

estimates were derived from models that included one knot for intensity (27 cigarettes/day) for 

laryngeal cancer and no knots for OCP cancer. Results on the combined set of former smokers 

(regardless of time since quitting) were similarly presented in eFigure 3. 

 

Discussion 

Our large pooled analysis showed that cigarette smoking duration and intensity did not 

increase HNC risk to the same extent, but the effect was greater for longer durations. At the 

highest combined levels of cigarette intensity and duration, subjects may reach ORs>10 of OCP 

cancer and ORs>40 of laryngeal cancer, as compared to never smokers. Bivariate regression 
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spline models have been proven successful in exploring the separate and joint effects of intensity 

and duration of cigarette smoking. Therefore, when possible, models that allow this differential 

impact of intensity and duration on the risk should be considered [8,12,16]. 

Results from the present study were consistent with previous findings showing no threshold 

effect on HNC risk of shorter durations or lower intensities of tobacco smoking [13,64]. Indeed, 

the literature supported the presence of a dose-response relationship between cigarette smoking 

and HNC risk over the entire range of consumption [5,13]. Our contribution additionally 

suggested that the dose-response relationship with OCP and laryngeal cancer risk was still far 

from being linear, with a steeper increase for intermediate consumptions and a possible plateaux 

indicating a ‘saturation effect’ in smokers with >20 years of duration and >30 cigarettes/day. 

Our results also strengthen the evidence [18,65] on the impact of smoking cessation on HNC 

cancer risk, with the OR in former smokers who quit ≥10 years ago being more than halved for 

OCP cancer and ~1/3 lower for laryngeal cancer, in comparison with current smokers. These 

results convey to the general population and to public health professionals the valuable message 

that it is never too late to give up cigarette smoking, as quitting provides far smaller risks of 

developing HNC cancer for OCP and, most of all, for laryngeal cancers. This is in accordance 

with another recently published meta-analysis of observational studies on laryngeal cancer 

based on 14,292 cases from 3 cohort and 15 case-control studies [65]. 

When the combined effect of smoking intensity and duration was modelled as a cross-product 

term, an interaction term between alcohol consumption and cigarette smoking was traditionally 
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added to the models [3,4]. In our study this effect was explored by stratified regression spline 

models estimated within categories of alcohol consumption; we compared the shape of the risk 

surface and the ORs values from the iso-risk curves across the three stratified analyses. 

However, our results also showed that alcohol acts as a substantial modifier of the association 

between OCP cancer risk and the joint effect of cigarette intensity and duration [4,17]. 

Major strengths of our study included a large sample size, international representativeness, 

and valid information on potential confounding factors. In addition, we applied a novel Bayesian 

approach to jointly estimate the optimal knot locations and the ORs of HNC for the joint effect of 

intensity and duration in a bivariate context. After examining various frequentist solutions [66,67], 

we opted for the Bayesian approach that allowed to put the knots where the data suggested, 

once we had taken the entire set of confounding variables into consideration. Within the 

Bayesian framework, we were also able to choose the optimal number of knots (up to 2) and 

knot locations by model comparison based on information criteria, instead of just comparing 

models with fixed number and location of the knots. Finally, we could incorporate in the model 

selection process evidence from the literature on the maximum number of changes in the risk 

pattern, which is likely to be 2. Indeed, cigarette smoking is supposed to have a protective or null 

effect on the risk at lower levels, a saturation effect at the highest intensity levels [68], as well as 

the expected increase previously described at the intermediate levels of consumption. The 

proposed Bayesian approach is applicable to other epidemiologic scenarios where continuous 

exposures in their potential interaction affect disease risk. 
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Among study limitations, the retrospective study design and the self-reported smoking history 

were the most relevant ones. Even if a large amount of literature has suggested acceptable 

correlations between self-reported smoking intensity and cotinine levels in blood or urine [69], 

inaccurate self-reporting may occur. Discrepancies between self-reported and objective 

information were more likely among long-term heavy smokers [70]; higher values of intensity and 

duration were therefore more prone to inaccurate reporting. Furthermore, smoking intensity may 

have varied over time and by age of exposure. However, its estimates were often based on the 

self-reported average number of cigarettes per day; these two aspects may have led to 

appreciable errors in measuring the true mean intensity of exposure over one’s lifetime. These 

issues may well be serious here, given the continuous nature of the exposures considered in 

spline models. To reduce information bias and residual confounding at the extreme values of the 

exposure distributions, we excluded subjects reporting higher (>95th percentiles) cigarette 

intensity and/or duration from the present analysis [13,15,71]. In addition, to avoid bias due to the 

use of other tobacco products, we excluded subjects reporting use of tobacco products other 

than cigarettes. We were also obliged to combine different subsites of OCP cancer, although 

differences in aetiology (i.e., the causal role of human papillomavirus in oropharyngeal cancer) 

have been demonstrated [34]. However, results were similar for major subsites, although based 

on less stable models. Finally, our Bayesian approach was computationally time consuming, 

asking for several hours of server computing for each model fitted. 
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Results from the present study confirmed previous evidence on the main contribution of 

cigarette smoking duration in influencing HNC risk and on the important reduction in HNC risk 

observed in former smokers who quit ≥10 or 15 years ago. Both results strongly support an even 

wider diffusion of public interventions to encourage smokers to quit and help them succeed. 
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Figure captions 

Figure 1 - Flow chart of subjects’ selection 

 

Figure 2 - Odds ratiosa,b of oral and pharyngeal cancer and laryngeal cancer in current 

smokers, for the joint effect of intensity (cigarettes/day) and duration (years) of cigarette 

smoking estimated through bivariate spline models. INHANCE consortium 

 

a Fitted models included adjustment for age, sex, race, study, education, drinking status, drinking 

intensity, and drinking duration. The reference category was defined as ‘‘Never smokers’’. b On 

the grid, black thicker lines represent knot locations: 16 cigarettes/day and 33 years of duration 

for oral and pharyngeal cancer and 25 cigarettes/day and 30 years of duration for laryngeal 

cancer, respectively. Dark grey lines in contour plots indicate iso-risk curves at defined levels of 

risk. 

 

Figure 3 - Odds ratiosa,b of oral and pharyngeal cancer in current smokers by alcohol 

drinking intensity, for the joint effect of intensity (cigarettes/day) and duration (years) of 

cigarette smoking, estimated through bivariate spline models. INHANCE consortium 

 

a Fitted models included adjustment for age, sex, race, study, education, and alcohol drinking 

status. The reference category was defined as ‘‘Never smokers’’, in each strata of alcohol 
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drinking intensity. b On the grid, black thicker lines represent knot locations: 32 years of duration 

for never drinkers, and 12 cigarettes/day and 25 years of duration for heavy drinkers, respectively. 

Dark grey lines in contour plots indicate iso-risk curves at defined levels of risk. 
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Figure 4 - Odds ratioa,b of oral and pharyngeal cancer and laryngeal cancer in former 

smokers who quit ≥10 years ago, for the joint effect of intensity (cigarettes/day) and 

duration (years) of cigarette smoking estimated through bivariate spline models. 

INHANCE consortium 

 

a Fitted models included adjustment for age, sex, race, study, education, drinking status, 

drinking intensity, and drinking duration. The reference category was defined as ‘‘Never 

smokers’’. b On the grid, the black thicker line represents the knot location: 27 cigarettes/day 

for laryngeal cancer. Dark grey lines in contour plots indicate iso-risk curves at defined levels 

of risk. 
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