. *-e-mail:-eugene, . Bychkov@univ, . Orcid-m, and . Kassem, , pp.0-0003

M. Bokova, , pp.0-0002

A. Tverjanovich, , pp.0-0002

D. Fontanari, , pp.0-0002

L. Coq, , pp.0-0001

A. Sokolov, , pp.0-0001

P. Masselin, , pp.0-0002

S. Kohara, , pp.0-0001

A. C. Hannon, , pp.0-0001

C. J. Benmore, , pp.0-0001

E. Bychkov, , pp.0-0002

I. Chung and M. G. Kanatzidis, Metal Chalcogenides: A Rich Source of Nonlinear Optical Materials, Chem. Mater, vol.26, pp.849-869, 2014.

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky et al., Strong Second Harmonic Generation Response and Phase-Change Properties of Its K and Rb Salts, J. Am. Chem. Soc, vol.129, pp.14996-15006, 2007.

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, Strongly Nonlinear Optical Glass Fibers from Noncentrosymmetric Phase-Change Chalcogenide Materials, J. Am. Chem. Soc, vol.132, pp.384-389, 2010.

I. Chung, M. Kim, J. I. Jang, J. He, J. B. Ketterson et al., Strongly Nonlinear Optical Chalcogenide Thin Films of APSe6 (A = K, Rb) from Spin-Coating, Angew. Chem. Int. Ed, vol.50, pp.10867-10870, 2011.

J. P. Ponpon, R. Stuck, P. Siffer, and C. Schwab, Preliminary Results on Mercuric Iodide Nuclear Radiation Detectors, Nucl. Instr. Methods, vol.119, pp.197-198, 1974.
URL : https://hal.archives-ouvertes.fr/in2p3-00018452

M. Schieber, A. Zuck, H. Gilboa, and G. Zentai, Reviewing Polycrystalline Mercuric Iodide X-Ray Detectors, IEEE Trans. Nucl. Sci, vol.53, pp.2385-2391, 2006.

H. Gilboa, A. Zuck, O. Dagan, A. Vilensky, B. N. Breen et al., Medical Imaging with Mercuric Iodide Direct Digital Radiography Flat-Panel X-Ray Detectors. Proc. SPIE, vol.4784, pp.315-325, 2002.

H. Jiang, Q. Zhao, L. E. Antonuk, Y. El-mohri, and T. Gupta, Development of Active Matrix Flat Panel Imagers Incorporating Thin Layers of Polycrystalline HgI 2 for Mammographic X-Ray Imaging, Phys. Med. Biol, vol.58, pp.703-714, 2013.

G. Zhang, Y. Li, K. Jiang, H. Zeng, T. Liu et al., A New Mixed Halide, Cs2HgI2Cl2: Molecular Engineering for a New Nonlinear Optical Material in the Infrared Region, J. Am. Chem. Soc, vol.134, pp.14818-14822, 2012.

X. Shi, Z. Ma, C. He, and K. Wu, Strong SHG Responses Predicted in Binary Metal Halide Crystal HgI2, Chem. Phys. Lett, vol.608, pp.219-223, 2014.

M. Hargittai, Molecular Structure of Metal Halides, Chem. Rev, vol.100, pp.2233-2301, 2000.

M. Hargittai, Structural Effects in Molecular Metal Halides, Acc. Chem. Res, vol.42, pp.453-462, 2009.

K. J. Donald, M. Hargittai, and R. Hoffmann, Group 12 Dihalides: Structural Predilections from Gases to Solids, Chem. Eur. J, vol.15, pp.158-177, 2009.

V. P. Spiridonov, A. G. Gershikov, and B. S. Butayev, Molecular Structure and Vibrational Potential Function of HgI2: Electron Diffraction Study, J. Mol. Struct, vol.52, pp.53-62, 1979.

A. G. Gershikov and V. P. Spiridonov, Curvilinearity Effects in Electron Diffraction, J. Mol. Struct, vol.75, pp.291-301, 1981.

A. Loewenschuss, A. Ron, and O. Schnepp, Vibrational Spectra of Group IIB Halides. II. The Halides of Cadmium and Mercury, J. Chem. Phys, vol.50, pp.2502-2512, 1969.

R. J. Clark and D. M. Rippon, Vapour Phase Raman Spectra of Mercury (II) Chloride, Mercury (II) Bromide and Mercury (II) Iodide, J. Chem. Soc. Faraday Trans, vol.2, pp.1496-1501, 1973.

G. A. Voyiatzis and G. N. Papatheodorou, Changes of Vibrational Modes Upon Melting Mercury (II) Halides, Ber. Bunsenges. Phys. Chem, vol.98, pp.683-689, 1994.

G. A. Jeffrey and M. Vlasse, On the Crystal Structures of the Red, Yellow, and Orange Forms of Mercuric Iodide, Inorg. Chem, vol.6, pp.396-399, 1967.

M. Hostettler, H. Birkedal, and D. Schwarzenbach, Polymorphs and Structures of Mercuric Iodide, Chimia, vol.55, pp.541-545, 2001.

M. Hostettler, H. Birkedal, and D. Schwarzenbach, The structure of Orange HgI 2. I. Polytypic Layer Structure, Acta Crystallog. B, vol.58, pp.903-913, 2002.

M. Hostettler and D. Schwarzenbach, The structure of Orange HgI2. II. Diamond-Type Structure and Twinning, Acta Crystallog. B, vol.58, pp.914-920, 2002.

M. Hostettler, H. Birkedal, and D. Schwarzenbach, The Yellow Polymorphs of Mercuric Iodide (HgI2)

, Helv. Chim. Acta, vol.86, pp.1410-422, 2003.

D. C. Parfitt, S. Hull, D. A. Keen, and W. Crichton, High-Pressure Dissociation of Silver Mercury Iodide, Ag2HgI4, J. Solid State Chem, vol.177, pp.3715-3720, 2004.

D. M. Adams, R. Appleby, J. Barlow, and M. A. Hooper, Vibrational Spectroscopy at Very High Pressures. 21. Raman and Infrared Study of Mercury (II) Iodide, J. Mol. Struct, vol.74, pp.221-231, 1981.

M. Y. Khilji, W. F. Sherman, A. Stadtmuller, and G. R. Wilkinson, Variable Temperature and Pressure Study of the Raman Spectrum of Five Phases of HgI2, J. Raman Spect, vol.11, pp.238-246, 1981.

A. J. Melveger, R. K. Khanna, B. R. Guscott, and E. R. Lippincott, Low-Frequency Laser-Excited Raman Spectral Study of the Red to Yellow Phase Transition in Mercuric Iodide, Inorg. Chem, vol.7, pp.1630-1634, 1968.

S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Saukrai et al., Structural Studies of Disordered Materials using High-Energy X-Ray Diffraction from Ambient to Extreme Conditions, J. Phys.: Condens. Matter, vol.19, p.506101, 2007.

A. C. Hannon, Results on Disordered Materials from the GEneral Materials Diffractometer, GEM, at ISIS, Nucl. Instrum. Methods Phys. Res., Sect. A, vol.551, pp.88-107, 2005.

A. C. Hannon, W. S. Howells, and A. K. Soper, ATLAS: A Suite of Programs for the Analysis of Time-ofFlight Neutron Diffraction Data from Liquid and Amorphous Samples, Inst. Phys. Conf. Ser, vol.107, 1990.

O. L. Alderman, M. Lis?a, J. Macha?c?k, C. J. Benmore, A. Lin et al., Temperature-Driven Structural Transitions in Molten Sodium Borates Na 2O?B2O3: X-ray Diffraction, Thermodynamic Modeling, and Implications for Topological Constraint Theory, J. Phys. Chem. C, vol.120, pp.553-560, 2016.

A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Ha?usermann, Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan, High Pressure Res, vol.14, pp.235-248, 1996.

L. B. Skinner, C. J. Benmore, and J. B. Parise, Area Detector Corrections for High Quality Synchrotron X-ray Structure Factor Measurements, Nucl. Instrum. Methods Phys. Res., Sect. A, vol.662, pp.61-70, 2012.

A. K. Soper, Empirical Potential Monte Carlo Simulation of Fluid Structure, Chem. Phys, vol.202, pp.295-306, 1996.

A. K. Soper, Partial Structure Factors from Disordered Materials Diffraction Data: an Approach using Empirical Potential Structure Refinement, Phys. Rev. B: Condens. Matter Mater. Phys, p.72, 2005.

A. K. Soper, Computer Simulation as a Tool for the Interpretation of Total Scattering Data from Glasses and Liquids, Mol. Simul, vol.38, pp.1171-1185, 2012.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

I. Gaussian, , 2016.

A. D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys, vol.98, pp.5648-5653, 1993.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B: Condens. Matter Mater. Phys, vol.37, pp.785-789, 1988.

D. Feller, The Role of Databases in Support of Computational Chemistry Calculations, J. Comput. Chem, vol.17, pp.1571-1586, 1996.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, Systematically Convergent Basis Sets with Relativistic Pseudopotentials. II. Small-Core Pseudopotentials and Correlation Consistent Basis Sets for the Post-d Group 16?18 Elements, J. Chem. Phys, vol.119, pp.11113-11123, 2003.

S. K. Kurtz and T. T. Perry, A Powder Technique for the Evaluation of Nonlinear Optical Materials, J. Appl. Phys, vol.39, pp.3798-3813, 1968.

E. Bychkov, C. J. Benmore, and D. L. Price, Compositional Changes of the First Sharp Diffraction Peak in Binary Selenide Glasses, Phys. Rev. B: Condens. Matter Mater. Phys, p.172107, 2005.

A. Bytchkov, G. J. Cuello, S. Kohara, C. J. Benmore, D. L. Price et al., Unraveling the Atomic Structure of Ge-Rich Sulfide Glasses, Phys. Chem. Chem. Phys, vol.15, pp.8487-8494, 2013.

E. Lorch, Neutron Diffraction by Germania, Silica and Radiation-Damaged Silica Glasses, J. Phys, vol.2, pp.229-237, 1969.

A. C. Hannon, XTAL: a Program for Calculating Interatomic Distances and Coordination Numbers for Model Structures, 1993.

S. S. Batsanov, Van der Waals Radii of Elements, Inorg. Mater, vol.37, pp.871-885, 2001.

F. Gan and . Structure, Properties and Applications of Chalcohalide Glasses: a Review, J. Non-Cryst. Solids, vol.140, pp.184-193, 1992.

R. Boidin, Etude des Propriétés de Conduction et Structurales des Verres du Système HgI 2-Ag2S-As2S3 : Application en tant que Capteur Chimique, 2013.

J. H. Lee, A. P. Owens, A. Pradel, A. C. Hannon, M. Ribes et al., Structure Determination of Ag-Ge-S Glasses using Neutron Diffraction, Phys. Rev. B: Condens. Matter Mater. Phys, vol.54, pp.3895-3909, 1996.

E. Bychkov and D. L. Price, Neutron Diffraction Studies of Ag2S?As2S3 Glasses in the Percolation and Modifier-Controlled Domains, Solid State Ionics, pp.136-137, 2000.

Y. Onodera, T. Usuki, T. Nasu, and S. Kohara, Structure of Silver Bromide Doped Chalcogenide Glasses, Solid State Ionics, vol.262, pp.469-471, 2014.

M. Kassem, A. Sokolov, A. Cuisset, T. Usuki, S. Khaoulani et al., Mercury Sulfide Dimorphism in Thioarsenate Glasses, J. Phys. Chem. B, vol.120, pp.5278-5290, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01426924

S. C. Moss and D. L. Price, Random Packing of Structural Units and the First Sharp Diffraction Peak in Glasses, Physics of Disordered Materials

D. Adler, H. Fritzsche, S. R. Ovshinsky, and . Eds, , pp.77-95, 1985.

P. Vashishta, R. K. Kalia, G. A. Antonio, and I. Ebbsjö, Atomic Correlations and Intermediate-Range Order in Molten and Amorphous GeSe2, Phys. Rev. Lett, vol.62, pp.1651-1654, 1989.

M. Micoulaut, A. Kachmar, M. Bauchy, S. Le-roux, C. Massobrio et al., Rings, and Vibrational and Electronic Properties of GexSe1?x Glasses across the Rigidity Transition: A Numerical Study, Phys. Rev. B: Condens. Matter Mater. Phys, p.54203, 2013.

A. J. Leadbetter and A. J. Apling, Diffraction Studies of Glass Structure. V. The Structure of Some Arsenic Chalcogenide Glasses, J. Non-Cryst. Solids, vol.15, pp.250-268, 1974.

Y. Iwadate, T. Hattori, S. Nishiyama, K. Fukushima, Y. Mochizuki et al., Pulsed Neutron Diffraction Study of the Short Range Structure in Amorphous Arsenic Chalcogenides, J. Phys. Chem. Solids, vol.60, pp.1447-1451, 1999.

E. Bychkov, M. Miloshova, D. L. Price, C. J. Benmore, A. Lorriaux et al., Intermediate and Mesoscopic Range Order in Sulfur-Rich Binary Glasses, J. Non-Cryst. Solids, vol.352, pp.63-70, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00104502

G. Lucovsky, Optic Modes in Amorphous As2S3 and As2Se3, Phys. Rev. B: Condens. Matter Mater. Phys, vol.6, pp.1480-1489, 1972.

T. Wágner, S. O. Kasap, M. Vl?ek, A. Sklená?, and A. Stronski, The structure of AsxS100-x glasses studied by temperature-modulated differential scanning calorimetry and Raman spectroscopy, J. Non-Cryst. Solids, vol.227, pp.752-756, 1998.

F. Kyriazis and S. N. Yannopoulos, Colossal Photostructural Changes in Chalcogenide Glasses: Athermal Photoinduced Polymerization in AsxS100-x Bulk Glasses Revealed by Near-Bandgap Raman Scattering, Appl. Phys. Lett, p.101901, 2009.

M. Kassem, S. Khaoulani, A. Cuisset, D. Le-coq, P. Masselin et al., Mercury Thioarsenate Glasses: A Hybrid Chain/Pyramidal Network
URL : https://hal.archives-ouvertes.fr/hal-01426903

P. J. Ewen and A. E. Owen, Resonance Raman Scattering in As-S Glasses, J. Non-Cryst. Solids, pp.35-36, 1980.

K. Tanaka, Chemical and medium-range orders in As2S3 glass, Phys. Rev. B: Condens. Matter Mater. Phys, vol.36, pp.9746-9752, 1987.

M. Kaupp and H. G. Von-schnering, Dominance of Linear 2-Coordination in Mercury Chemistry: Quasirelativistic and Nonrelativistic ab Initio Pseudopotential Study of (HgX2)2 (X = F, Cl, Br, I, H), Inorg. Chem, vol.33, 1994.

M. Liao, Q. Zhang, W. H. Schwarz, . E-;-m-=-zn, . Cd et al., Properties and Stabilities of MX, MX2, and M2X2 Compounds, vol.34, pp.5591-5605, 1995.

A. Tverjanovich, A. Cuisset, D. Fontanari, and E. Bychkov, Structure of Se-Te Glasses by Raman Spectroscopy and DFT Modeling, J. Am. Ceram. Soc, vol.101, pp.5188-5197, 2018.

T. Schleid, P. Lauxmann, and C. Schneck, Roentgenographische Einkristalluntersuchungen an alphaHgS (Zinnober), Z. Kristallogr, vol.16, p.95, 1999.

D. Rodic, V. Spasojevic, A. Bajorek, and P. Onnerud, Similarity of Structure Properties of Hg1-xMnxS and Cd1-xMnxS (Structure Properties of HgMnS and CdMnS), J. Magn. Magn. Mater, vol.152, pp.159-164, 1996.

R. Zaiter, M. Kassem, D. Fontanari, A. Cuisset, C. J. Benmore et al., Ionic Transport and Atomic Structure of AgI-HgS-GeS2 Glasses, Pure Appl. Chem, 2019.

M. F. Bräu and A. Pfitzner, HgI2·As4S4: An Adduct from HgI2 Molecules and Undistorted As4S4 Cages, Angew. Chem. Int. Ed, vol.45, pp.4464-4467, 2006.

V. Nazabal and I. Kityk, Second Harmonic Generation in Chalcogenide Glasses, Chalcogenide Glasses: Preparation, Properties and Applications
URL : https://hal.archives-ouvertes.fr/hal-00989577

J. Adam and X. Zhang, , pp.509-561, 2014.

M. Fox, Optical Properties of Solids, 2001.