A. Eggermont, A. Spatz, and C. Robert, Cutaneous melanoma, Lancet Lond Engl, vol.383, pp.816-843, 2014.

H. Benlalam, N. Labarrière, B. Linard, L. Derré, E. Diez et al., Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy, Eur J Immunol, vol.31, pp.2007-2022, 2001.

C. G. Clemente, M. C. Mihm, R. Bufalino, S. Zurrida, P. Collini et al., Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma, Cancer, vol.77, pp.1303-1313, 1996.

. Nathanson, Spontaneous regression of malignant melanoma: a review of the literature on incidence, clinical features, and possible mechanisms, Natl Cancer Inst Monogr, vol.44, pp.67-76, 1976.

C. Hua, L. Boussemart, C. Mateus, E. Routier, C. Boutros et al., Association of Vitiligo With Tumor Response in Patients With Metastatic Melanoma Treated With Pembrolizumab, JAMA Dermatol, vol.152, pp.45-51, 2016.

A. B. Lerner, The Seiji memorial lecture. Pigment stories: from vitiligo to melanomas and points in between, Pigment Cell Res, vol.2, pp.19-21, 1992.

B. T. Fife and J. A. Bluestone, Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways, Immunol Rev, 2008.

M. F. Krummel and J. P. Allison, CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation, J Exp Med, vol.182, pp.459-65, 1995.

E. J. Wherry, T cell exhaustion, Nat Immunol, vol.131, pp.492-501, 2011.

L. Trautmann, L. Janbazian, N. Chomont, E. A. Said, S. Gimmig et al., Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction, Nat Med, vol.12, pp.1198-202, 2006.

M. Ahmadzadeh, L. A. Johnson, B. Heemskerk, J. R. Wunderlich, M. E. Dudley et al., Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired, Blood, vol.114, pp.1537-1581, 2009.

J. D. Wolchok, H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi et al., Nivolumab plus Ipilimumab in Advanced Melanoma, N Engl J Med, vol.369, pp.122-155, 2013.

C. Garbe, K. Peris, A. Hauschild, P. Saiag, M. Middleton et al., Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline -Update, European Journal of Cancer, vol.63, pp.201-218, 2016.

D. Schadendorf, A. Van-akkooi, C. Berking, K. G. Griewank, R. Gutzmer et al., The Lancet, vol.392, pp.971-84, 2018.

S. Napolitano, G. Brancaccio, G. Argenziano, E. Martinelli, F. Morgillo et al., It is finally time for adjuvant therapy in melanoma, Cancer Treatment Reviews, vol.69, pp.101-112, 2018.

. Bristol-myers-squibb and . Company, Ipilimumab (Yervoy). Highlights of prescribing information

. Merck-&-co and . Inc, Highlights of prescribing information, 2019.

. Bristol-myers-squibb and . Company, Nivolumab (Opdivo). Highlights of prescribing information

, Markham A, Duggan S. Cemiplimab: First Global Approval. Drugs, vol.78, pp.1841-1847, 2018.

A. European-medicines, , 2011.

T. C. Longoria and K. S. Tewari, Evaluation of the pharmacokinetics and metabolism of pembrolizumab in the treatment of melanoma, Expert Opin Drug Metab Toxicol, vol.12, pp.1247-53, 2016.

A. European-medicines, , 2015.

A. Wong and B. Ma, An update on the pharmacodynamics, pharmacokinetics, safety and clinical efficacy of nivolumab in the treatment of solid cancers, Expert Opin Drug Metab Toxicol, vol.12, pp.1255-61, 2016.

A. European-medicines, , 2015.

S. Shaabani, H. Huizinga, R. Butera, A. Kouchi, K. Guzik et al., A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles, Expert Opin Ther Pat, vol.28, pp.665-78, 2015.

J. Yang and L. Hu, Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: From antibodies to small molecules, Med Res Rev, vol.39, pp.265-301, 2019.

M. Oliva, A. J. Rullan, and J. M. Piulats, Uveal melanoma as a target for immune-therapy, Ann Transl Med, vol.4, p.172, 2016.

A. S. Berghoff, V. A. Venur, M. Preusser, and M. S. Ahluwalia, Immune Checkpoint Inhibitors in Brain Metastases: From Biology to Treatment, Am Soc Clin Oncol Educ Book, pp.116-138, 2016.

A. Cicchetti, S. Coretti, D. Mascia, N. Mazzanti, P. Refolo et al., Assessing social and economic impact of subcutaneous mAbs in oncology. Glob Reg Health Technol Assess Ital North Eur Span, vol.2018, pp.1-9, 2018.

J. D. Wolchok, B. Neyns, L. G. Negrier, S. Lutzky, J. Thomas et al., Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study, Lancet Oncol, vol.11, pp.155-64, 2010.

Y. Feng, E. Masson, D. Dai, S. M. Parker, D. Berman et al., Model-based clinical pharmacology profiling of ipilimumab in patients with advanced melanoma, Br J Clin Pharmacol, vol.78, pp.106-123, 2014.

R. J. Keizer, A. Huitema, J. Schellens, and J. H. Beijnen, Clinical pharmacokinetics of therapeutic monoclonal antibodies, Clin Pharmacokinet, vol.49, pp.493-507, 2010.

D. R. Mould and B. Green, Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development, BioDrugs Clin Immunother Biopharm Gene Ther, vol.24, pp.23-39, 2010.

M. Ahamadi, T. Freshwater, M. Prohn, C. Li, D. De-alwis et al., Model-Based Characterization of the Pharmacokinetics of Pembrolizumab: A Humanized Anti-PD-1 Monoclonal Antibody in Advanced Solid Tumors, CPT Pharmacomet Syst Pharmacol, vol.6, pp.49-57, 2017.

J. Elassaiss-schaap, S. Rossenu, A. Lindauer, S. Kang, R. De-greef et al., Using Model-Based "Learn and Confirm" to Reveal the Pharmacokinetics-Pharmacodynamics Relationship of Pembrolizumab in the KEYNOTE-001 Trial, CPT Pharmacomet Syst Pharmacol, vol.6, pp.21-29, 2017.

H. Li, J. Yu, C. Liu, J. Liu, S. Subramaniam et al., Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response, J Pharmacokinet Pharmacodyn, vol.44, pp.403-417, 2017.

G. Bajaj, X. Wang, S. Agrawal, M. Gupta, A. Roy et al., Model-Based Population Pharmacokinetic Analysis of Nivolumab in Patients With Solid Tumors: Model-Based Population Pharmacokinetic Analysis of Nivolumab, CPT Pharmacomet Syst Pharmacol, vol.6, pp.58-66, 2017.

C. Liu, J. Yu, H. Li, J. Liu, Y. Xu et al., Association of Time-Varying Clearance of Nivolumab With Disease Dynamics and Its Implications on Exposure Response Analysis, Clin Pharmacol Ther, vol.101, pp.657-66, 2017.

O. Hamid, H. Schmidt, A. Nissan, L. Ridolfi, S. Aamdal et al., A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma, J Transl Med, vol.9, p.204, 2011.

A. V. Maker, J. C. Yang, R. M. Sherry, S. L. Topalian, U. S. Kammula et al., Intrapatient Dose Escalation of Anti-CTLA-4 Antibody in Patients With Metastatic Melanoma, J Immunother, vol.29, pp.455-463, 2006.

D. Mcdermott, J. Haanen, T. Chen, P. Lorigan, O. Day et al., Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20), MDX010-20 Investigators, vol.24, pp.2694-2702, 2013.

Y. Feng, A. Roy, E. Masson, T. Chen, R. Humphrey et al., Exposure-Response Relationships of the Efficacy and Safety of Ipilimumab in Patients with Advanced Melanoma, Clin Cancer Res, vol.19, pp.3977-86, 2013.

A. Patnaik, S. P. Kang, D. Rasco, K. P. Papadopoulos, J. Elassaiss-schaap et al., Phase I Study of Pembrolizumab (MK, p.3475

, Anti-PD-1 Monoclonal Antibody) in Patients with Advanced Solid Tumors, Clin Cancer Res, vol.21, pp.4286-93, 2015.

J. R. Sachs, K. Mayawala, S. Gadamsetty, and S. P. Kang, Alwis DP de. Optimal Dosing for Targeted Therapies in Oncology: Drug Development Cases Leading by Example, Clin Cancer Res, vol.22, pp.1318-1342, 2016.

A. Lindauer, C. Valiathan, K. Mehta, V. Sriram, R. De-greef et al., Translational Pharmacokinetic/Pharmacodynamic Modeling of Tumor Growth Inhibition Supports Dose-Range Selection of the Anti-PD-1 Antibody Pembrolizumab, CPT Pharmacomet Syst Pharmacol, vol.6, pp.11-20, 2017.

J. Elassaiss-schaap, Allometric scaling in oncology disease progression from xenograft tumor growth to human non-small-cell lung cancer. 19th Annu Meet Popul Approach Group Eur, pp.8-11, 2010.

M. Chatterjee, J. Elassaiss-schaap, A. Lindauer, D. Turner, A. Sostelly et al., Population Pharmacokinetic/Pharmacodynamic Modeling of Tumor Size Dynamics in Pembrolizumab-Treated Advanced Melanoma, CPT Pharmacomet Syst Pharmacol, vol.6, pp.29-39, 2017.

L. Claret, P. Girard, P. M. Hoff, E. Van-cutsem, K. P. Zuideveld et al., Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics, J Clin Oncol Off J Am Soc Clin Oncol, vol.27, pp.4103-4111, 2009.

G. V. Goldmacher and J. Conklin, The use of tumour volumetrics to assess response to therapy in anticancer clinical trials, Br J Clin Pharmacol, vol.73, pp.846-54, 2012.

A. Ribas, I. Puzanov, R. Dummer, D. Schadendorf, O. Hamid et al., Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial, Lancet Oncol, vol.16, pp.908-926, 2015.

C. Robert, J. Schachter, G. V. Long, A. Arance, J. J. Grob et al., Pembrolizumab versus Ipilimumab in Advanced Melanoma, N Engl J Med, vol.372, pp.2521-2553, 2015.

T. Freshwater, A. Kondic, M. Ahamadi, C. H. Li, R. De-greef et al., Evaluation of dosing strategy for pembrolizumab for oncology indications, J Immunother Cancer, vol.5, p.43, 2017.

D. Turner, A. G. Kondic, K. M. Anderson, A. Robinson, E. B. Garon et al., Pembrolizumab exposure-response assessments challenged by association of cancer cachexia and catabolic clearance, Clin Cancer Res, vol.24, issue.23, pp.5841-5849, 2018.

S. Agrawal, Y. Feng, A. Roy, G. Kollia, and B. Lestini, Nivolumab dose selection: challenges, opportunities, and lessons learned for cancer immunotherapy, J Immunother Cancer, vol.4, p.72, 2016.

Y. Wang, C. Sung, C. Dartois, R. Ramchandani, B. P. Booth et al., Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development, Clin Pharmacol Ther, vol.86, pp.167-74, 2009.

X. Wang, Y. Feng, G. Bajaj, M. Gupta, S. Agrawal et al., Quantitative Characterization of the Exposure-Response Relationship for Cancer Immunotherapy: A Case Study of Nivolumab in Patients With Advanced Melanoma, CPT Pharmacomet Syst Pharmacol, vol.6, pp.40-48, 2017.

G. Bajaj, M. Gupta, Y. Feng, P. Statkevich, and A. Roy, Exposure-Response Analysis of Nivolumab in Patients With Previously Treated or Untreated Advanced Melanoma, J Clin Pharmacol, vol.57, issue.12, pp.1527-1533, 2017.

M. A. Postow, J. Chesney, A. C. Pavlick, C. Robert, K. Grossmann et al., Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma, N Engl J Med, vol.372, pp.2006-2023, 2015.

J. Larkin, V. Chiarion-sileni, R. Gonzalez, J. J. Grob, C. L. Cowey et al., Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma, N Engl J Med, vol.373, pp.23-34, 2015.

G. V. Long, V. Atkinson, J. S. Cebon, M. B. Jameson, B. M. Fitzharris et al., Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial, Lancet Oncol, vol.18, pp.1202-1212, 2017.

M. Lala, M. Li, V. Sinha, D. De-alwis, E. Chartash et al., A six-weekly (Q6W) dosing schedule for pembrolizumab based on an exposure-response (E-R) evaluation using modeling and simulation, J Clin Oncol, vol.36, pp.3062-3062, 2018.

X. Zhao, S. Suryawanshi, M. Hruska, Y. Feng, X. Wang et al., Assessment of nivolumab benefitrisk profile of a 240-mg flat dose relative to a 3-mg/kg dosing regimen in patients with advanced tumors, Ann Oncol Off J Eur Soc Med Oncol, vol.28, pp.2002-2010, 2017.

G. V. Long, S. S. Tykodi, J. G. Schneider, C. Garbe, G. Gravis et al., Assessment of nivolumab exposure and clinical safety of 480 mg every 4 weeks flat-dosing schedule in patients with cancer, Ann Oncol, vol.29, pp.2208-2221, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02143540

M. Sandri, Protein breakdown in cancer cachexia, Semin Cell Dev Biol, vol.54, pp.11-20, 2016.

D. Ternant, N. Azzopardi, R. W. Bejan-angoulvant, T. Paintaud, and G. , Influence of Antigen Mass on the Pharmacokinetics of Therapeutic Antibodies in Humans, Clin Pharmacokinet, vol.58, pp.169-87, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01821717

M. Centanni, D. Moes, I. F. Trocóniz, J. Ciccolini, and J. Van-hasselt, Clinical Pharmacokinetics and Pharmacodynamics of Immune Checkpoint Inhibitors. Clin Pharmacokinet, 2019.

,

H. Kaufman, L. H. Schwartz, W. N. William, M. Sznol, M. Del-aguila et al., Evaluation of clinical endpoints as surrogates for overall survival in patients treated with immunotherapies, J Clin Oncol, vol.35, pp.14557-14557, 2017.

J. D. Wolchok, A. Hoos, S. O'day, J. S. Weber, O. Hamid et al., Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria, Clin Cancer Res, vol.15, pp.7412-7432, 2009.

F. S. Hodi, W. Hwu, R. Kefford, J. S. Weber, A. Daud et al., Evaluation of Immune-Related Response Criteria and RECIST v1.1 in Patients With Advanced Melanoma Treated With Pembrolizumab

, J Clin Oncol, vol.34, pp.1510-1517, 2016.

M. Donia, M. L. Kimper-karl, K. L. Høyer, L. Bastholt, H. Schmidt et al., The majority of patients with metastatic melanoma are not represented in pivotal phase III immunotherapy trials, Eur J Cancer, vol.74, pp.89-95, 2017.

V. Gopalakrishnan, C. N. Spencer, L. Nezi, A. Reuben, M. C. Andrews et al., Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients, Science, vol.359, issue.6371, p.97, 2017.