S. E. Alavi, Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul, Sci. Rep, vol.6, p.19891, 2016.

A. G. Pakhomov, Y. Akyel, O. N. Pakhomova, B. E. Stuck, and M. R. Murphy, Current state and implications of research on biological effects of millimeter waves: a review of the literature, Bioelectromagnetics, vol.19, pp.393-413, 1998.

M. Zhadobov, N. Chahat, R. Sauleau, C. Le-quement, and Y. Le-drean, Millimeter-wave interactions with the human body: State of knowledge and recent advances, Int. J. Microw. Wirel. Technol, vol.3, pp.237-247, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664437

A. A. Radzievsky, Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids, Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc, vol.29, pp.284-295, 2008.

M. C. Ziskin, Millimeter waves: Acoustic and electromagnetic, Bioelectromagnetics, vol.34, pp.3-14, 2013.

S. I. Alekseev, O. V. Gordiienko, A. A. Radzievsky, and M. C. Ziskin, Millimeter wave effects on electrical responses of the sural nerve in vivo, Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc, vol.31, pp.180-190, 2010.

T. Wu, T. S. Rappaport, and C. M. Collins, The human body and millimeter-wave wireless communication systems: Interactions and implications, Communications (ICC), pp.2423-2429, 2015.

W. Grundler, F. Keilmann, and H. Fröhlich, Resonant growth rate response of yeast cells irradiated by weak microwaves, Phys. Lett. A, vol.62, pp.463-466, 1977.

W. Grundler, F. Kaiser, F. Keilmann, and J. Walleczek, Mechanisms of electromagnetic interaction with cellular systems, Naturwissenschaften, vol.79, pp.551-559, 1992.

W. Grundler and F. Kaiser, Experimental evidence for coherent excitations correlated with cell growth, Nanobiology, vol.1, pp.163-176, 1992.

A. A. Kataev, A. A. Alexandrov, L. L. Tikhonova, and G. N. Berestovsky, Frequency-dependent effects of the electromagnetic millimeter waves on the ion currents in the cell membrane of Nitellopsis: Nonthermal action, Biofizika, vol.38, pp.446-462, 1993.

I. Y. Belyaev, Y. D. Alipov, V. S. Shcheglov, V. A. Polunin, and O. A. Aizenberg, Cooperative response of Escherichia coli cells to the resonance effect of millimeter waves at super low intensity, Electro-Magnetobiology, vol.13, pp.53-66, 1994.

O. P. Gandhi, M. J. Hagmann, D. W. Hill, L. M. Partlow, and L. Bush, Millimeter wave absorption spectra of biological samples, Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc, vol.1, pp.285-298, 1980.

L. G. Bush, Effects of millimeter-wave radiation on monolayer cell cultures. III. A search for frequency-specific athermal biological effects on protein synthesis, Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc, vol.2, pp.151-159, 1981.

K. D. Kazarinov, V. S. Sharov, A. Putvinski?, and O. Betskii, The effect of continuous millimeter low-intensity radiation on the Na+ ion transport in the frog skin, Biofizika, vol.29, pp.480-482, 1984.

L. Furia, D. W. Hill, and O. P. Gandhi, Effect of millimeter-wave irradiation on growth of Saccharomyces cerevisiae, IEEE Trans. Biomed. Eng, pp.993-999, 1986.

R. N. Khramov, E. A. Sosunov, S. V. Koltun, E. N. Ilyasova, and V. V. Lednev, Millimeter-wave effects on electric activity of crayfish stretch receptors, Bioelectromagnetics, vol.12, pp.203-214, 1991.

R. K. Adair, Biophysical limits on athermal effects of RF and microwave radiation, Bioelectromagnetics, vol.24, pp.39-48, 2003.

M. Zhadobov, Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins, Bioelectromagnetics, vol.28, pp.188-196, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00102032

C. N. Nicolaz, Study of narrow band millimeter-wave potential interactions with endoplasmic reticulum stress sensor genes, Bioelectromagnetics, vol.30, pp.365-373, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00676765

C. N. Nicolaz, Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress, Cell Biol. Toxicol, vol.25, pp.471-478, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00406594

L. Quément and C. , Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression, Bioelectromagnetics, vol.35, pp.444-451, 2014.

D. Habauzit, Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure, PloS One, vol.9, p.109435, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01118066

Y. Soubere-mahamoud, Additive effects of millimeter waves and 2-deoxyglucose co-exposure on the human keratinocyte transcriptome, PloS One, vol.11, p.160810, 2016.

A. Ramundo-orlando, Effects of millimeter waves radiation on cell membrane-A brief review, J. Infrared Millim. Terahertz Waves, vol.31, pp.1400-1411, 2010.

M. Zhadobov, Near-field dosimetry for in vitro exposure of human cells at 60 GHz, Bioelectromagnetics, vol.33, pp.55-64, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00750306

L. Pogam and P. , Untargeted Metabolomics Reveal Lipid Alterations upon 2-Deoxyglucose Treatment in Human HaCaT Keratinocytes, J. Proteome Res, vol.17, pp.1146-1157, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730281

H. G. Gika, G. A. Theodoridis, R. S. Plumb, and I. D. Wilson, Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics, J. Pharm. Biomed. Anal, vol.87, pp.12-25, 2014.

M. Zhadobov, Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters, IEEE Trans. Microw. Theory Tech, vol.54, pp.2534-2542, 2006.

I. Szabo, J. Kappelmayer, S. I. Alekseev, and M. C. Ziskin, Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro, Bioelectromagnetics, vol.27, pp.233-244, 2006.

A. Ramundo-orlando, Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase, Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc, vol.28, pp.587-598, 2007.

A. Ramundo-orlando, The response of giant phospholipid vesicles to millimeter waves radiation, Biochim. Biophys. Acta BBA-Biomembr, vol.1788, pp.1497-1507, 2009.

D. Donato, L. Cataldo, M. Stano, P. Massa, R. Ramundo-orlando et al., Permeability changes of cationic liposomes loaded with carbonic anhydrase induced by millimeter waves radiation, Radiat. Res, vol.178, pp.437-446, 2012.

E. Anton, Links between extremely high frequency electromagnetic waves and their biological manifestations, Arch. Biol. Sci, vol.67, pp.895-897, 2015.

H. Torgomyan, K. Hovnanyan, and A. Trchounian, Escherichia coli growth changes by the mediated effects after low-intensity electromagnetic irradiation of extremely high frequencies, Cell Biochem. Biophys, vol.65, pp.445-454, 2013.

J. Teissie, M. Golzio, and M. P. Rols, Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge, Biochim. Biophys. Acta BBA-Gen. Subj, vol.1724, pp.270-280, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078716

A. G. Pakhomov, Membrane permeabilization and cell damage by ultrashort electric field shocks, Arch. Biochem. Biophys, vol.465, pp.109-118, 2007.

G. Kerdivel, Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines, Mol. Cell. Endocrinol, vol.390, pp.34-44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061363

A. J. Haas, Impact of 60-GHz millimeter waves on stress and pain-related protein expression in differentiating neuron-like cells, Bioelectromagnetics, vol.37, pp.444-454, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371963

A. Ahlbom, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Phys, vol.74, pp.494-521, 1998.

K. Dias, C. De, P. A. Barbugli, and C. E. Vergani, Influence of different buffers (HEPES/MOPS) on keratinocyte cell viability and microbial growth, J. Microbiol. Methods, vol.125, pp.40-42, 2016.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem, vol.78, pp.779-787, 2006.

C. Kuhl, R. Tautenhahn, C. Bottcher, T. R. Larson, and S. Neumann, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal. Chem, vol.84, pp.283-289, 2011.

S. Bijlsma, Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation, Anal. Chem, vol.78, pp.567-574, 2006.