M. C. Heffern, L. M. Matosziuk, and T. J. Meade, Lanthanide Probes for, Bioresponsive Imaging Chem. Rev, vol.114, pp.4496-4539, 2014.

R. Noyori and . Catalysis, Science and Opportunites (Nobel Lecture) Angew. Chem. Int. Ed, vol.41, 2002.

O. Mcconnell, A. Bach, C. Balibar, N. Byrne, Y. Cai et al., Enantiomeric separation and determination of absolute stereochemistry of asymmetric molecules in drug discovery-Building chiral technology toolboxes Chirality, vol.19, pp.658-682, 2007.

J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, Chiral nanotechnology Chirality, vol.17, pp.404-420, 2005.

J. R. Brandt, F. Salerno, and M. J. Fuchter, The Added Value of Small-Molecule Chirality in Technological Applications Nature Reviews Chemistry, vol.1, p.45, 2017.

N. P. Huck, W. F. Jgar, B. De-lange, and B. L. Feringa, Dynamic Control and Amplification of Molecular Chirality by Circularly Polarized Light Science, vol.273, pp.1696-1688, 1996.

L. M. Haupert and G. J. Simpson, Chirality in Nonlinear Optics, Annu. Rev. Phys. Chem, vol.60, pp.345-365, 2009.

L. A. Nguyen, H. He, and C. Pham-huy, Chiral Drugs: An Overview Int, J. Biomed. Sci, vol.2, pp.85-100, 2006.

N. Chhabra, M. L. Aseri, and D. Padmanabhan, A Review of Drug Isomerism and Its Signifiance, Int. J. Appl. Basic Med. Res, vol.3, pp.16-18, 2013.

P. L. Polavarapu, Renaissance in chiroptical spectroscopic methods for molecular structure determination, Chem. Rec, vol.7, pp.125-136, 2007.

P. L. Polavarapu, Molecular Structure Determination Using Chiroptical Spectroscopy: Where We May Go Wrong? Chirality, vol.24, pp.909-920, 2012.

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy, vol.1, 2012.

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Applications in Stereochemical Analysis of Synthetic Compounds, vol.2, 2012.

E. Sánchez-carnero, A. R. Agarrabeita, F. Moreno, B. L. Maroto, G. Muller et al., Curcularly Polarized Luminescence from Simple Organic Molecules Chem, Eur. J, vol.21, pp.13488-13500, 2015.

H. Tanak, Y. Inoue, and T. Mori, Circularly Polarized Luminescence and Circular Dichroisms in Small Organic Molecules: Correlation between Excitation and Emission Dissymmetry Factors Chem. Photo Chem, vol.2, pp.386-402, 2018.

A. J. Mccaffery and S. F. Mason, The Electronic Spectra, Optical Rotatory Power and Absolute Configuration of Metal Complexes. The Dextro-tris (Ethylenediamine)Cobalt(III) ion, Mol. Phys, vol.6, pp.359-371, 1963.

S. F. Mason and B. J. Norman, Outer-Sphere Co-ordination and Optical Activity in TransitionMetal Complexes Chem, Commun, pp.335-336, 1965.

F. S. Richardson, Theory of Optical Activity in the Ligand-Field Transitions of Chiral Transition Metal Complexes, Chem. Rev, vol.79, pp.17-36, 1979.

C. Shen, E. Anger, M. Srebro, N. Vanthuyne, K. K. Deol et al., Straightforward access to mono-and bis-cycloplatinated helicenes that display circularly polarized phosphorescence using crystallization resolution methods, Chem. Sci, vol.5, pp.1915-1927, 2014.

X. Zhang, V. Y. Chang, J. Liu, X. Yang, W. Huang et al., Potential Switchable Circularly Polarized Luminescence from Chiral Cyclometalated Platinum(II) Complexes Inorg. Chem, vol.54, pp.143-152, 2015.

F. J. Coughlin, M. S. Westrol, K. D. Oyler, N. Byrne, C. Kraml et al., Separation, and Circularly Polarized Luminescence Studies of Enantiomers of Iridium(III) Luminophores Inorg. Chem, vol.47, pp.2039-2048, 2008.

J. P. Riehl and F. S. Richardson, Circularly Polarized Luminescence Spectrsocopy Chem. Rev, vol.86, pp.1-16, 1986.

J. I. Bruce, D. Parker, S. Lopinski, and R. Peacock, Survey of Factors Determining the Circularly Polarised Luminescence of Macrocylce Lanthanide Complexes in Solution Chirality, vol.14, pp.562-567, 2002.

G. Muller, Luminescent Chiral Lanthanide(III) Complexes as Potential Molecular Probes Dalton Trans, pp.9692-9707, 2009.

G. Muller, Circularly Polarized Luminescence, Luminescence of Lanthanide Ions
URL : https://hal.archives-ouvertes.fr/hal-02090687

A. De-bettencourt-dias, , pp.77-123, 2014.

R. Carr, N. H. Evans, and D. Parker, LanthanideComplexes as Chiral Probes Exploiting Circularly Polarized Luminescence Chem, Soc. Rev, vol.41, pp.7673-7686, 2012.

F. Zinna and L. Di-bari, Lanthanide Circularly Polarized Luminescences: Bases and Applications Chirality, vol.27, pp.1-13, 2015.

J. L. Lunkley, D. Shirotani, K. Yamanari, S. Kaizaki, and G. Muller, Extraordinary Circularly Polarized Luminescence Activity Exhibited by Cesium Tetrakis(3-Heptafluorobutylryl-(+)-Camphorato) Eu(III) Complexes in EtOH and CHCl 3 Solutions, J. Am. Chem. Soc, vol.130, pp.13814-13815, 2008.

J. L. Lunkley, D. Shirotani, K. Yamanari, S. Kaizaki, and G. Muller, Chiroptical Spectra of a Series of Tetrakis((+)-3-Heptafluorobutylrylcamphorato)lanthanide(III) with an Encapsulated Alkali Metal Ion: Circularly Polarized Luminescence and Absolute Chiral Structures for the Eu(III) and Sm(III), Complexes Inorg. Chem, vol.50, pp.12724-12732, 2011.

T. D. Crawford, Ab Initio Calculation of Molecular Chiroptical Properties Theor, Chem. Acc, vol.115, pp.227-245, 2006.

J. Autschbach, Computing chiroptical properties with first-principles theoretical methods: Background and illustrative examples Chirality, vol.21, pp.116-152, 2009.

G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, S. Abbate et al., A Review of Experimental and Theoretical Aspects Chirality, vol.28, pp.697-707, 2016.

M. Srebro-hooper and J. Autschbach, Calculating Natural Optical Activity of Molecules from First Principles, Annu. Rev. Phys. Chem, vol.68, pp.399-420, 2017.

A. Ianeselli, S. Orioli, G. Spagnolli, P. Faccioli, L. Cupellini et al., Atomic Detail of Protein Folding Revealed by an Ab Initio Reappraisal of Circular Dichroism, J. Am. Chem. Soc, vol.140, pp.3674-3682, 2018.

F. Santoro and D. Jacquemin, Going Beyond the Vertical Approximation with TimeDependent Density Functional Theory Wires Comput, Mol. Sci, vol.6, pp.460-486, 2016.

B. Pritchard and J. Autschbach, Calculation of Vibrationally Resolved Circularly Polarized Luminescence of d-Camphorquinone and (S,S)-trans-b-Hydrindanone ChemPhysChem, vol.11, pp.2409-2415, 2010.

M. Pecul and K. Ruud, The optical activity of , -enones in ground and excited states using circular dichroism and circularly polarized luminescence, Phys. Chem. Chem. Phys, vol.13, pp.643-650, 2011.

P. H. Schippers, J. P. Van-de-ploeg, and H. P. Dekkers, Circular Polarization in the Fluorescence of , -Enones: Distortion in the n 1 * States, J. Am. Chem. Soc, vol.105, pp.84-89, 1983.

H. R. Mcalexander and T. D. Crawford, Simulation of Circularly Polarized Luminescence Spectra using Coupled Cluster Theory, J. Chem. Phys, p.154101, 2015.

J. Autschbach, Spectroscopic Properties obtained from Time-Dependent Density Functional Theory (TD-DFT), In Computational Inorganic and Bioinorganic Chemistry, vol.9

E. I. Solomon, R. A. Scott, and R. B. King, , pp.71-90, 2009.

J. Autschbach, Calculating electronic optical activity of coordination compounds, Comprehensive Inorganic Chemistry II, vol.9, pp.407-426, 2013.

J. Autschbach, F. E. Jorge, and T. Ziegler, Density functional calculations on electronic circular dichroism spectra of chiral cobalt(III) complexes, Inorg. Chem, vol.42, pp.2867-2877, 2003.

F. E. Jorge, J. Autschbach, and T. Ziegler, On the Origin of the Optical Activity in the d-d Transition Region of Tris-bidentate Co(III) and Rh(III), Complexes Inorg. Chem, vol.42, pp.8902-8910, 2003.

J. Fan, M. Seth, J. Autschbach, and T. Ziegler, Circular dichroism of trigonal dihedral Chromium(III) complexes: A theoretical study based on open-shell time-dependent density functional theory, Inorg. Chem, vol.47, pp.11656-11668, 2008.

J. Fan and T. Ziegler, On the Origin of Circular Dichroism in Trigonal Dihedral d 6 Complexes of Bidentate Ligands Containing Only -Orbitals. A Qualitative Model Based on a Density Functional Theory Study of, vol.20, pp.938-950, 2008.

L. Guennic, B. Hieringer, W. Görling, A. Autschbach, and J. , Density functional calculations of electronic circular dichroism spectra of the transition metal complexes, J. Phys. Chem. A, vol.109, pp.4836-4846, 2005.

M. Rudolph and J. Autschbach, Performance of conventional and range-separated hybrid density functionals in calculations of electronic circular dichroism spectra of transition metal complexes, J. Phys. Chem. A, vol.115, pp.14677-14686, 2011.

M. Rudolph and J. Autschbach, Calculation of Optical Rotatory Dispersion and Electronic Circular Dichroism for Tris-Bidentate group 8 and 9 metal complexes, with emphasis on exciton coupling, J. Phys. Chem. A, vol.115, pp.2635-2649, 2011.

G. Mazzeo, M. Fusè, G. Longhi, I. Rimoldi, E. Cesarotti et al., Vibrational Circular Dichroism and Chiroptical Properties of Chiral Ir(III) Luminescent Complexes Dalton Trans, vol.45, pp.992-999, 2016.

N. V. Karimova and C. M. Aikens, Chiroptical Activity in BINAP-and DIOP-Stabilized Octa and Undecagold Clusters, J. Phys. Chem. C, vol.122, pp.11051-11065, 2018.

F. S. Richardson and T. R. Faulkner, Optical Activity of the f-f Transitions in Trigonal Diherdral (D 3 ) Lanthanide(III) Complexes. I. Theory, J. Chem. Phys, vol.76, pp.1595-1606, 1982.

J. D. Saxe, T. R. Faulkner, and F. S. Richardson, Optical Activity of the f-f Transitions in Trigonal Diherdral (D 3 ) Lanthanide(III) Complexes. II. Calculations, J. Chem. Phys, vol.76, pp.1607-1623, 1982.

B. R. Judd, Optical Absorption Intensities of Rare-Earth Ions Phys. Rev, vol.127, pp.750-761, 1962.

G. S. Ofelt, Intensities of Crystal Spectra if Rare-Earth Ions, J. Chem. Phys, vol.37, pp.511-520, 1962.

R. Berardozzi and L. Di-bari, Optical Activity in the Near-IR Region: The = 980 nm Multiplet of Chiral Yb 3+ Complexes, Chem. Phys. Chem, vol.16, pp.2868-2875, 2015.

T. Wu, J. Kessler, and P. Bour, Chiral Sensing of Amino Acids and Proteins Chelating with Eu Complexes by Raman Optical Activity Spectroscopy Phys, Chem. Chem. Phys, vol.18, pp.23803-23811, 2016.

S. Jurinovich, G. Pescitelli, L. Di-bari, B. Mennucci, and . Tddft/mmpol, PCM Model for the Simulation of Exciton-Coupled Circular Dichroism Spectra Phys, Chem. Chem. Phys, vol.16, pp.16407-16418, 2014.

R. Berardozzi, G. Pescitelli, S. Di-pietro, C. Resta, F. P. Ballistreri et al., Structural Characterization, and Chiroptical Studies of Bidentate Salen-Type Lanthanide (III) Complexes Chirality, vol.27, pp.857-863, 2015.

T. Wu, J. Hudecová, X. You, M. Urbanová, and P. Bour, Comparison of the Electronic and Vibrational Optical Activity of a Europium(III) Complex Chem, Eur. J, vol.21, pp.5807-5813, 2015.

A. Kerridge, The Complete-Active-Space Self-Consistent-Field Approach and Its Application to Molecular Complexes if the f-Elements, Computational Methods in Lanthanide and Actinide Chemistry

M. Dolg and . Ed, , pp.121-146, 2015.

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, A Complete Active Space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chem. Phys, vol.48, pp.157-173, 1980.

P. Malmqvist, B. O. Roos, and B. Schimmelpfennig, The restricted active space (RAS) state interaction approach with spin-orbit coupling, Chem. Phys. Lett, vol.357, pp.230-240, 2002.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., Gaussian 09, Revision D.01, 2009.

X. Li and M. J. Frisch, Energy-Represented Direct Inversion in the Iterative Subspace within a Hybrid Geometry Optimization Method, J. Chem. Theory Comput, vol.2, pp.835-839, 2006.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol.37, pp.785-789, 1988.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, vol.98, pp.5648-5652, 1993.

T. Yanai and N. Handy, A New Hybrid Exchange-Correlation Functional Using the CoulombAttenuating Method, Chem. Phys. Lett, vol.393, pp.51-57, 2004.

T. H. Dunning, Gaussian Basis Set for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen, J. Chem. Phys, vol.90, pp.1007-1023, 1989.

K. , N. Shiro, M. Saito, Y. Kuroya, and H. , Studies on Crystals of Metallic TrisEhtlyenediamine-Complexes. II. The Crystal Structure of Sodium D-Tris-EthylenediamineCobalt(III) chloride Hexahydrate, Bull. Chem. Soc. Jpn, vol.30, pp.158-164, 1956.

F. Weigend and R. Ahlrichs, Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadrupole Zeta Valence Quality for H to Rn: Design and Assessement of Accuracy Phys, Chem. Chem. Phys, vol.7, pp.3297-3305, 2005.

M. Dolg, H. Stoll, and H. Preuss, Energy-Adjusted Ab-Initio Pseudopotentials for the Rare Earth Elements, J. Chem. Phys, p.1730, 1989.

X. Cao and M. Dolg, Segmented Contraction Scheme for Small-Core Lanthanide Pseudopotential, Basis Sets J. Molec. Struct. Theochem, vol.581, pp.139-147, 2002.

T. H. Dunning and P. J. Hay, Gaussian Basis Sets for Molecular Calculations, Methods of Electronic Structure Theory

H. F. Schaefer, . Ed, and U. S. Springer, , 19771.

G. Te-velde, F. M. Bickelhaupt, E. J. Baerends, S. J. Van-gisbergen, C. Fonseca-guerra et al., Chemistry with ADF J. Compt. Chem, vol.22, pp.931-967, 2001.

C. Fonseca-guerra, J. G. Snijders, G. Te-velde, and E. J. Baerends, Towards an order-N DFT method Theor, Chem. Acc, p.391, 1998.

E. J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, D. Bashford et al., ADF2017, 2017.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, p.1396, 1996.

M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchangecorrelation functional, J. Chem. Phys, vol.110, pp.5029-5036, 1999.

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys, vol.110, pp.6158-6170, 1999.

E. Van-lenthe and E. J. Baerends, Optimized Slater-type basis sets for the elements 1 -118, J. Comput. Chem, vol.24, pp.1142-1156, 2003.

J. Autschbach and T. Ziegler, Calculating molecular electric and magnetic properties from time dependent density functional perturbation theory, J. Chem. Phys, vol.116, pp.891-896, 2002.

J. Autschbach, T. Ziegler, S. Patchkovskii, S. J. Van-gisbergen, and E. J. Baerends, Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules, J. Chem. Phys, vol.117, pp.581-592, 2002.

S. J. Van-gisbergen, J. G. Snijders, and E. J. Baerends, Implementation of Time-Dependent Density Functional Response Equations Comput. Phys. Comm, vol.118, pp.119-138, 1999.

E. Van-lenthe, E. J. Baerends, and J. G. Snijders, Relativistic regular two-component Hamiltonians, J. Chem. Phys, vol.99, pp.4597-4610, 1993.

E. Van-lenthe, E. J. Baerends, and J. G. Snijders, Relativistic Total Energy Using Regular Approximations, J. Chem. Phys, vol.101, p.9783, 1999.

C. C. Pye and T. Ziegler, An Implementation of the Conductor-Like Screening Model of Solvation wtihin the Amsterdam Density Functional Package Theor, Chem. Acc, vol.101, pp.396-408, 1999.

J. Autschbach, Time-dependent density functional theory for calculating originindependent optical rotation and rotatory strength tensors ChemPhysChem, vol.12, pp.3224-3235, 2011.

J. Autschbach, T. Ziegler, S. J. Van-gisbergen, and E. J. Baerends, Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules, J. Chem. Phys, vol.116, pp.6930-6940, 2002.

R. L. Martin, Natural Transition Orbitals J. Chem. Phys, vol.118, pp.4775-4777, 2003.

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey et al., Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table, J. Comput. Chem, vol.37, pp.506-541, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409053

M. Douglas and N. M. Kroll, Quantum electrodynamical corrections to the fine structure of helium, Ann. Phys, vol.82, pp.89-155, 1974.

B. A. Hess, Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations, Phys. Rev. A, vol.32, pp.756-763, 1985.

B. A. Hess, Relativistic electronic-structure calculations employing a two-component nopair formalism with external-field projection operators, Phys. Rev. A, vol.33, pp.3742-3748, 1986.

A. Wolf, M. Reiher, and B. A. Hess, The generalized Douglas-Kroll transformation, J. Chem. Phys, vol.117, pp.9215-9226, 2002.

P. Widmark, P. Malmqvist, and B. O. Roos, Density-matrix averaged atomic natural orbital (ANO) basis-sets for correlated molecular wave-functions. I. First row atoms Theor, Chim. Acta, vol.77, pp.291-306, 1990.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and P. Widmark, Main group atoms and dimers studied with a new relativistic ANO basis set, J. Phys. Chem. A, vol.108, pp.2851-2858, 2004.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and P. Widmark, New relativistic ANO basis sets for transition metal atoms, J. Phys. Chem. A, vol.109, p.6575, 2005.

K. Andersson, P. Malmqvist, B. O. Roos, A. J. Sadlev, and K. Wolinski, Second-order perturbation theory with a CASSCF reference function, J. Phys. Chem, vol.94, pp.5483-5488, 1990.

M. Cossi, N. Rega, G. Scalmani, and V. Barone, Polarizable Dielectric Model of Solvation with Inclusion of Charge Penetration Effects, J. Chem. Phys, vol.114, p.5691, 2001.

V. Barone and M. Cossi, Quatum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A, vol.102, 1995.

F. Gendron, V. E. Fleischauer, T. J. Duignan, B. L. Scott, M. W. Löble et al., Magnetic circular dichroism of UCl ? 6 in the ligand-to-metal charge-transfer spectral region, Phys. Chem. Chem. Phys, vol.19, pp.17300-17313, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583939

H. Bolvin, ? d Spectrum and High-Spin/Low-Spin Competition in d 6

, Octahedral Coordination Compounds: Ab Initio Study of Potential Energy Curves J. Phys. Chem. A, vol.102, pp.7525-7534, 1998.

M. Kepenekian, V. Robert, and B. Le-guennic, What Zroth-Order Hamiltonian for CASPT2 Adiabatic Energestics of Fe(II)N 6 Architectures ?, J. Chem. Phys, p.114702, 2009.

S. Vela, M. Fumanal, J. Ribas-ariño, and V. Robert, On the Zeroth-Order Hamiltonian for CASPT2 Calculations of Spin Crossover Compounds, J. Comput. Chem, vol.37, pp.947-953, 2016.

P. J. Lestrange, F. Egidi, and X. Li, The Consequences of Improperly Describing Oscillator Strengths beyond the Electric Dipole Approximation, J. Chem. Phys, p.234103, 2015.

L. K. Sørensen, M. Guo, R. Lindh, and M. Lundberg, Applications to metal K pre-edges of transition metal dimers illustrate the approximate origin independence for the intensities in the length representation, Mol. Phys, vol.115, pp.174-189, 2017.

T. B. Pedersen and A. E. Hansen, Ab-initio Calculation and Display of the Rotatory Strength Tensor in the Random Phase Approximation. Method and Model Studies Chem, Phys. Lett, vol.246, pp.1-8, 1995.

S. Debeer-george, T. Petrenko, and F. Neese, Time-Dependent Density Functional Calculations of Ligand K-Edge X-ray Absorption Spectra Inorg, Chim. Acta, vol.361, pp.965-972, 2008.

G. Longhi, E. Castiglioni, S. Abbate, F. Lebon, and D. A. Lightner, Experimental and Calculated CPL Spectra and Related Spectroscopic Data of Camphor and Other Simple Chiral Bicyclic Ketones Chirality, vol.25, pp.589-599, 2013.

J. Autschbach and M. Srebro, Delocalization error and 'functional tuning' in Kohn-Sham calculations of molecular properties, Acc. Chem. Res, vol.47, pp.2592-2602, 2014.

C. A. Emeis and L. J. Oosterhoff, Emission of Circularlay Polarized Radiation by Optically Active Compounds, Chem. Phys. Lett, vol.1, pp.129-132, 1967.

C. A. Emeis and L. J. Oosterhoff, The ? * Absorption and Emission of Optically Active trans--Hydrindanone and trans--Thiohydrindanone, J. Chem. Phys, vol.54, pp.4809-4819, 1971.

C. B. Viswanatha, B. Helmich-paris, and C. Hättig, Circularly polarized fluorescence and phosphorescence calculations on organic molecules using the approximate coupled-cluster model CC2, Phys. Chem. Chem. Phys, vol.20, pp.21051-21061, 2018.

B. I. Moore, M. Srebro, and J. Autschbach, Analysis of Optical Activity in Terms of Bonds and Lone-Pairs: The exceptionally LArge Optixal Roatation of Norbornenone, J. Chem. Theory Comput, vol.8, pp.4336-4346, 2012.

M. Caricato, Orbital Analysis of Molecular Optical Activity Based on Configuration Rotatory Strength, J. Chem. Theory Comput, vol.11, pp.1349-1353, 2015.

M. Caricato, P. H. Vaccaro, T. D. Crawford, K. B. Wiberg, and P. Lahiri, Insights on the Origin of the Unusually Large Specific Rotation of (1S,4S)-Norbornenone, J. Phys. Chem. A, vol.118, pp.4863-4871, 2014.

M. Kobayshi, Optical Rotatory Power and Circular Dichroism. III. Rotatory Dispersion of D-[Coen 3 ]Br 3, J. Chem. Soc. Jpn, vol.64, pp.648-653, 1943.

J. Mathieu, Circular Dichroism, Valence Bonds, and Secondary Asymmetric Sybthesis, Ann. Phys, vol.19, pp.335-354, 1944.

S. F. Mason and B. J. Peart, Crystal Circular Dichroism and Spin-Forbidden Optical Activity of Tris(Diamine)Cobalt(III) Complexes J. C. S. Dalton Trans, vol.0, pp.937-941, 1977.

R. W. Strickland and F. S. Richardson, Optical Activity of Transition Metal Compounds. III. Molecular Orbital Calculations on Six-Coordinate Complexes of Trigonal Symmetry Inorg. Chem, vol.12, pp.1025-1036, 1973.

R. S. Evans, A. F. Schreiner, and P. J. Hauser, Natural Optical Activity of Co(en) 3 3+ and Cr(en) 3 3+ : Interpretations with Complete Operator Matrices Inorg, Chem, vol.13, pp.2185-2192, 1974.

S. F. Mason and R. H. Seal, Complementation of the Crystal-Field for Dihedral Optical Activity, J. C. S. Chem. Comm, vol.0, pp.331-333, 1975.

S. F. Mason and R. H. Seal, The Optical Activity of Cobalt(III) Chelate Diamine Complexes Mol. Phys, vol.31, pp.755-775, 1976.

W. Moffit, Optical Rotatory Dispersion of Transition-Metal Complexes, J. Chem. Phys, vol.25, pp.1189-1198, 1956.

A. D. Lehr, Interaction of Electromagnetic Radiationwith Matter. I. Theory of Optical Rotatory Power: Topic A, Trigonal Dihedral Compounds J. Chem. Phys, vol.68, pp.665-722, 1964.

A. G. Karipides and T. S. Piper, Optical Activity of Coordination Compounds. II. A Molecular Orbital Model and an Analysis of Experimental Data fir Complexes of Trigonal Symmetry, J. Chem. Phys, vol.40, pp.674-682, 1964.

F. S. Richardson, The Optical Activity of Trigonally Distorded Cubic Systems, J. Phys. Chem, vol.75, pp.692-712, 1971.

L. D. Baron, Electric Quadrupole Contributions to the Optical Activity of Crystalline Transition Metal Complexes, Mol. Phys, vol.21, pp.241-246, 1971.

M. C. Ernst and D. J. Royer, Optical Activity in Tris Bidentate Cobalt(III) Complexes. An ab initio Study Inorg, Chem, vol.32, pp.1226-1232, 1993.

F. E. Jorge, J. Autschbach, and T. Ziegler, On the Origin of Optical Activity in tris-diamine complexes of Co(III) and Rh(III), J. Am. Chem. Soc, vol.127, pp.975-985, 2005.

R. Kuroda and Y. Saito, Solid-State Circular Dichroism Spectra of Tris(diamine)cobalt(III) Complexes: Decomposition in E and A 2 Components, Bull. Chem. Soc. Jpn, vol.49, pp.433-436

F. S. Richardson, The Optical Activity of Disymmetric Six-Coordinate Cobalt(III) Complexes, Inorg. Chem, vol.11, pp.2366-2378, 1972.

M. Kami?ski, J. Cukras, M. Pecul, A. Rizzo, and S. Coriani, A Computational Protocol for the Study of Circularly Polarized Phosphorescence and Circular Dichroism in SpinForbidden Absorption Phys, Chem. Chem. Phys, vol.17, pp.19079-19086, 2015.

S. V. Eliseeva and J. G. Bünzli, Lanthanide Luminescence for Functional Materials and Bio-Sciences Chem. Soc. Rev, vol.39, pp.189-227, 2010.

A. D'aléo, A. Picot, A. Beeby, J. A. Williams, B. Le-guennic et al., Efficient Sensitization of Europium, Ytterbium, and Neodymium Functionalized Tris-Dipicolinate Lanthanide Complexes Through Tunable Charge-Transfer Excited States Inorg, Chem, vol.47, pp.10258-19268, 2008.

R. Janicki, A. Kedziorski, and A. Mondry, The First Example of ab-initio Calculations of f-f Transitions for the Case of

, Complex -Experiment versus Theory Phys

, Chem. Chem. Phys, vol.18, pp.27808-27817, 2016.

A. Y. Freidzon, I. Kurbatov, and V. I. Vovna, Ab inito Calculation of Energy Levels of Trivalent Lanthanide Ions Phys, Chem. Chem. Phys, 2018.

M. Hatanaka and S. Yabushita, Mechanisms of f-f Hypersensitive Transition Intensities of Lanthanide Trihalide Molecules: A Spin-Orbit Conifguration Interaction Study Theor, Chem. Acc, p.1517, 2014.

G. L. Hilmes and J. P. Riehl, Circularly Polarized Luminescence from Racemic Lanthanide(III) Complexes with Achiral Ligands in Aqueous Solution using Circularly Polarized Excitation Inorg, Chem, vol.25, pp.2617-2622, 1986.

F. S. Richardson, Terbium(III) and Europium(III) Ions as Luminescent Probes and Stains for Biomolecular Systems, Chem. Rev, vol.82, pp.541-552, 1982.

M. H. Werts, R. T. Jukes, and J. W. Verhoeven, The Emission Spectrum and the Radiative Lifetome of Eu 3+ in Luminescent Lanthanide Complexes Phys, Chem. Chem. Phys, vol.4, pp.1542-1548, 2002.

K. Binnemans, Interpretation of Europieum(III) Spectra Coord, Chem. Rev, vol.295, pp.1-45, 2015.

E. Huskowska, P. Gawryszewska, J. Legendziewicz, C. L. Maupin, and J. Riehl, The Measurement of Circularly Polarized Luminescence from Racemic Lanthanide Complexes Prepared in Sol-Gels, J. Alloys Compd, vol.303, pp.325-330, 2000.

J. Sokolnicki, J. Legendziewicz, and J. P. Riehl, The Effect of Excited State Energy Transfer on the Circularly Polarized Luminescence from Sol-Gels Containing Racemic Complexes of Eu(III): Theory and Experiment, J. Phys. Chem. B, vol.106, pp.1508-1514, 2002.

J. Sokolnicki, J. Legendziewicz, G. Muller, and J. P. Riehl, The Luminescence, Molecular and Electronic Structure, and Excited State Energetics of Tris-Complexes of 4-phenylethynil-2,6-pyridinedicarboxylic Acid with Eu(III) and Tb(III) Prepared in Sol-Gel Opt. Mat, vol.27, pp.1529-1536, 2005.

N. Coruh, G. L. Hilmes, and J. P. Riehl, Use of the Pfeiffer Effect to Probe the Optical Activity of Europium(III) Complexes with 2,6-Pyridinedicarboxylate Inorg, Chem, vol.27, pp.3647-3651, 1988.

S. Knecht, S. Keller, J. Autschbach, and M. Reiher, A nonorthogonal state-interaction approach for matrix product state wave functions, J. Chem. Theory Comput, vol.12, pp.5881-5894, 2016.

S. F. Keller and M. Reiher, Determining Factors for the Accuracy of DMRG in Chemistry Chimia, vol.68, pp.200-203, 2014.