A. W. Lambert, D. R. Pattabiraman, and R. A. Weinberg, Emerging Biological Principles of Metastasis, Cell, vol.168, issue.4, pp.670-691, 2017.

G. P. Gupta and J. Massague, Cancer metastasis: building a framework, Cell, vol.127, issue.4, pp.679-95, 2006.

A. Kreso and J. E. Dick, Evolution of the cancer stem cell model, Cell Stem Cell, vol.14, issue.3, pp.275-91, 2014.

E. Charafe-jauffret, C. Ginestier, F. Iovino, C. Tarpin, M. Diebel et al., Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer, Clin Cancer Res, vol.16, issue.1, pp.45-55, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01431949

C. Ginestier, M. H. Hur, E. Charafe-jauffret, F. Monville, J. Dutcher et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome, Cell Stem Cell, vol.1, issue.5, pp.555-67, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01431968

A. Merlos-suarez, F. M. Barriga, P. Jung, M. Iglesias, M. V. Cespedes et al., The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse, Cell Stem Cell, vol.8, issue.5, pp.511-535, 2011.

M. Malleter, S. Tauzin, A. Bessede, R. Castellano, A. Goubard et al., CD95L cell surface cleavage triggers a prometastatic signaling pathway in triplenegative breast cancer, Cancer Res, vol.73, issue.22, pp.6711-6732, 2013.

S. Kleber, I. Sancho-martinez, B. Wiestler, A. Beisel, C. Gieffers et al., -Villalba, Yes and PI3K bind CD95 to signal invasion of glioblastoma, Cancer Cell, vol.13, issue.3, pp.235-283, 2008.

A. S. Qadir, P. Ceppi, S. Brockway, C. Law, L. Mu et al., CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response, Cell reports, vol.18, issue.10, pp.2373-2386, 2017.

L. Chen, S. M. Park, A. V. Tumanov, A. Hau, K. Sawada et al., CD95 promotes tumour growth, vol.465, pp.492-498, 2010.

C. Dostert, M. Grusdat, E. Letellier, and D. Brenner, The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond, Physiol Rev, vol.99, issue.1, pp.115-160, 2019.

M. R. Alderson, R. J. Armitage, E. Maraskovsky, T. W. Tough, E. Roux et al.,

D. H. Ramsdell and . Lynch, Fas transduces activation signals in normal human T lymphocytes, J Exp Med, vol.178, issue.6, pp.2231-2236, 1993.

B. C. Trauth, C. Klas, A. M. Peters, S. Matzku, P. Möller et al., Monoclonal antibody-mediated tumor regression by induction of apoptosis, Science, vol.245, issue.4915, pp.301-306, 1989.

S. Yonehara, A. Ishii, and M. Yonehara, A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor, J Exp Med, vol.169, issue.5, pp.1747-56, 1989.

N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima et al., The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell, vol.66, issue.2, pp.233-276, 1991.

A. Oehm, I. Behrmann, W. Falk, M. Pawlita, G. Maier et al., Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen, J Biol Chem, vol.267, issue.15, pp.10709-10724, 1992.

C. A. Smith, T. Farrah, and R. G. Goodwin, The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death, Cell, vol.76, issue.6, pp.959-62, 1994.

R. M. Locksley, N. Killeen, and M. J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology, Cell, vol.104, issue.4, pp.487-501, 2001.

J. L. Bodmer, P. Schneider, and J. Tschopp, The molecular architecture of the TNF superfamily, Trends in biochemical sciences, vol.27, issue.1, pp.19-26, 2002.

N. Itoh and S. Nagata, A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen, J Biol Chem, vol.268, issue.15, pp.10932-10939, 1993.

L. A. Tartaglia, T. M. Ayres, G. H. Wong, and D. V. Goeddel, A novel domain within the 55 kd TNF receptor signals cell death, Cell, vol.74, issue.5, pp.845-53, 1993.

J. P. Guegan and P. Legembre, Nonapoptotic functions of Fas/CD95 in the immune response, FEBS J, vol.285, issue.5, pp.809-827, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744407

K. Bajou, H. Peng, W. E. Laug, C. Maillard, A. Noel et al., Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis, Cancer Cell, vol.14, issue.4, pp.324-358, 2008.

M. Tanaka, T. Itai, M. Adachi, and S. Nagata, Downregulation of Fas ligand by shedding, Nat Med, vol.4, issue.1, pp.31-37, 1998.

T. Suda, H. Hashimoto, M. Tanaka, T. Ochi, and S. Nagata, Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing, J Exp Med, vol.186, issue.12, pp.2045-50, 1997.

P. Schneider, N. Holler, J. L. Bodmer, M. Hahne, K. Frei et al., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity, J Exp Med, vol.187, issue.8, pp.1205-1218, 1998.

M. Tanaka, T. Suda, K. Haze, N. Nakamura, K. Sato et al., Fas ligand in human serum, Nat Med, vol.2, issue.3, pp.317-339, 1996.

F. C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, Embo J, vol.14, issue.22, pp.5579-88, 1995.

F. Gonzalvez, D. Lawrence, B. Yang, S. Yee, R. Pitti et al., TRAF2 Sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer, Mol Cell, vol.48, issue.6, pp.888-99, 2012.

M. Rothe, M. G. Pan, W. J. Henzel, T. M. Ayres, and D. V. Goeddel, The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins, Cell, vol.83, issue.7, pp.1243-52, 1995.

H. Wajant and P. Scheurich, TNFR1-induced activation of the classical NF-kappaB pathway, FEBS J, vol.278, issue.6, pp.862-76, 2011.

B. C. Barnhart, P. Legembre, E. Pietras, C. Bubici, G. Franzoso et al., CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells, Embo J, vol.23, issue.15, pp.3175-85, 2004.

S. Kreuz, D. Siegmund, J. J. Rumpf, D. Samel, M. Leverkus et al., NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP, J Cell Biol, vol.166, issue.3, pp.369-80, 2004.

S. Tauzin, B. Chaigne-delalande, E. Selva, N. Khadra, S. Daburon et al., The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway, PLoS Biol, vol.9, issue.6, p.1001090, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00681970

N. Khadra, L. Bresson-bepoldin, A. Penna, B. Chaigne-delalande, B. Segui et al.,

J. Vacher, T. Reiffers, J. F. Ducret, M. D. Moreau, P. Cahalan et al., CD95 triggers Orai1-mediated localized Ca2+ entry, regulates recruitment of protein kinase C (PKC) beta2, and prevents death-inducing signaling complex formation, Proc Natl Acad Sci U S A, vol.108, issue.47, pp.19072-19079, 2011.

F. J. Hoogwater, M. W. Nijkamp, N. Smakman, E. J. Steller, B. L. Emmink et al., Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells, Gastroenterology, vol.138, issue.7, pp.2357-67, 2010.

A. Poissonnier, D. Sanseau, M. L. Gallo, M. Malleter, N. Levoin et al., CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice, vol.45, pp.209-232, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359568

A. Strasser, P. J. Jost, and S. Nagata, The many roles of FAS receptor signaling in the immune system, Immunity, vol.30, issue.2, pp.180-92, 2009.

R. Watanabe-fukunaga, C. I. Brannan, N. G. Copeland, N. A. Jenkins, and S. Nagata, Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature, vol.356, issue.6367, pp.314-321, 1992.

T. Takahashi, M. Tanaka, C. I. Brannan, N. A. Jenkins, N. G. Copeland et al., Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand, Cell, vol.76, issue.6, pp.969-76, 1994.

A. Matsuzawa, T. Moriyama, T. Kaneko, M. Tanaka, M. Kimura et al., A new allele of the lpr locus, lprcg, that complements the gld gene in induction of lymphadenopathy in the mouse, J Exp Med, vol.171, issue.2, pp.519-550, 1990.

L. A. O'-reilly, L. Tai, L. Lee, E. A. Kruse, S. Grabow et al., Membrane-bound Fas ligand only is essential for Fas-induced apoptosis, Nature, vol.461, issue.7264, pp.659-63, 2009.

S. Tauzin, L. Debure, J. F. Moreau, and P. Legembre, CD95-mediated cell signaling in cancer: mutations and post-translational modulations, Cellular and molecular life sciences : CMLS, vol.69, issue.8, pp.1261-77, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00682466

P. Legembre, B. C. Barnhart, L. Zheng, S. Vijayan, S. E. Straus et al., Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds, EMBO Rep, vol.5, issue.11, pp.1084-1093, 2004.

J. Desbarats, R. B. Birge, M. Mimouni-rongy, D. E. Weinstein, J. S. Palerme et al., Fas engagement induces neurite growth through ERK activation and p35 upregulation, Nat Cell Biol, vol.5, issue.2, pp.118-143, 2003.

M. R. Alderson, T. W. Tough, T. Davis-smith, S. Braddy, B. Falk et al., Fas ligand mediates activation-induced cell death in human T lymphocytes, J Exp Med, vol.181, issue.1, pp.71-78, 1995.

J. Dhein, H. Walczak, C. Baumler, K. M. Debatin, and P. H. Krammer, Autocrine T-cell suicide mediated by APO-1/(Fas/CD95), Nature, vol.373, issue.6513, pp.438-479, 1995.

S. T. Ju, D. J. Panka, H. Cui, R. Ettinger, M. El-khatib et al., MarshakRothstein, Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation, Nature, vol.373, issue.6513, pp.444-452, 1995.

T. Brunner, R. J. Mogil, D. Laface, N. J. Yoo, A. Mahboubi et al., Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas, Nature, vol.373, issue.6513, pp.441-445, 1995.

H. Fukuyama, M. Adachi, S. Suematsu, K. Miwa, T. Suda et al., Transgenic expression of Fas in T cells blocks lymphoproliferation but not autoimmune disease in MRLlpr mice, J Immunol, vol.160, issue.8, pp.3805-3816, 1998.

J. Wu, T. Zhou, J. Zhang, J. He, W. C. Gause et al., Correction of accelerated autoimmune disease by early replacement of the mutated lpr gene with the normal Fas apoptosis gene in the T cells of transgenic MRL-lpr/lpr mice, Proc Natl Acad Sci U S A, vol.91, issue.6, pp.2344-2352, 1994.

I. Mabrouk, S. Buart, M. Hasmim, C. Michiels, E. Connault et al., Prevention of autoimmunity and control of recall response to exogenous antigen by Fas death receptor ligand expression on T cells, Immunity, vol.29, issue.6, pp.922-955, 2008.

C. A. Klebanoff, C. D. Scott, A. J. Leonardi, T. N. Yamamoto, A. C. Cruz et al., Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy, J Clin Invest, vol.126, issue.1, pp.318-352, 2016.

M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and universality of calcium signalling, Nat Rev Mol Cell Biol, vol.1, issue.1, pp.11-21, 2000.

E. Carafoli, Calcium signaling: a tale for all seasons, Proc Natl Acad Sci U S A, vol.99, issue.3, pp.1115-1137, 2002.

G. Hajnoczky, G. Csordas, M. Madesh, and P. Pacher, The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria, J Physiol, vol.529, pp.69-81, 2000.

R. Rizzuto and T. Pozzan, Microdomains of intracellular Ca2+: molecular determinants and functional consequences, Physiol Rev, vol.86, issue.1, pp.369-408, 2006.

A. J. Morgan, F. M. Platt, E. Lloyd-evans, and A. Galione, Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease, Biochem J, vol.439, issue.3, pp.349-74, 2011.

P. Pizzo, V. Lissandron, P. Capitanio, and T. Pozzan, Ca(2+) signalling in the Golgi apparatus, Cell Calcium, vol.50, issue.2, pp.184-92, 2011.

A. Raffaello, C. Mammucari, G. Gherardi, and R. Rizzuto, Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes, vol.41, pp.1035-1049, 2016.

P. Kischel, A. Girault, L. Rodat-despoix, M. Chamlali, S. Radoslavova et al., Ion Channels: New Actors Playing in Chemotherapeutic Resistance, vol.11, 2019.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, issue.5, pp.646-74, 2011.

H. Lu, I. Chen, L. A. Shimoda, Y. Park, C. Zhang et al., Chemotherapy-Induced Ca(2+) Release Stimulates Breast Cancer Stem Cell Enrichment, Cell reports, vol.18, issue.8, pp.1946-1957, 2017.

P. Rovere, E. Clementi, M. Ferrarini, S. Heltai, C. Sciorati et al., CD95 engagement releases calcium from intracellular stores of long term activated, apoptosis-prone gammadelta T cells, J Immunol, vol.156, issue.12, pp.4631-4638, 1996.

J. Urresti, M. Ruiz-meana, E. Coccia, J. C. Arevalo, J. Castellano et al., Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells, J Biol Chem, vol.291, issue.3, pp.1221-1255, 2016.

A. L. Wozniak, X. Wang, E. S. Stieren, S. G. Scarbrough, C. J. Elferink et al., Requirement of biphasic calcium release from the endoplasmic reticulum for Fas-mediated apoptosis, J Cell Biol, vol.175, issue.5, pp.709-723, 2006.

Y. F. Chen, Y. T. Chen, W. T. Chiu, and M. R. Shen, Remodeling of calcium signaling in tumor progression, J Biomed Sci, vol.20, p.23, 2013.

M. P. Stemmler, R. L. Eccles, S. Brabletz, and T. Brabletz, Non-redundant functions of EMT transcription factors, Nat Cell Biol, vol.21, issue.1, pp.102-112, 2019.

K. R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance, Nature, vol.527, issue.7579, pp.472-478, 2015.

M. L. Gardel, I. C. Schneider, Y. Aratyn-schaus, and C. M. Waterman, Mechanical integration of actin and adhesion dynamics in cell migration, Annu Rev Cell Dev Biol, vol.26, pp.315-348, 2010.

J. T. Parsons, A. R. Horwitz, and M. A. Schwartz, Cell adhesion: integrating cytoskeletal dynamics and cellular tension, Nat Rev Mol Cell Biol, vol.11, issue.9, pp.633-676, 2010.

N. Prevarskaya, R. Skryma, and Y. Shuba, Calcium in tumour metastasis: new roles for known actors, Nat Rev Cancer, vol.11, issue.8, pp.609-627, 2011.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg et al., Cell migration: integrating signals from front to back, Science, vol.302, issue.5651, pp.1704-1713, 2003.

M. Monet, M. Poet, S. Tauzin, A. Fouque, A. Cophignon et al., The cleaved FAS ligand activates the Na(+)/H(+) exchanger NHE1 through Akt/ROCK1 to stimulate cell motility, Scientific reports, vol.6, p.28008, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01334067

F. C. Tsai, G. H. Kuo, S. W. Chang, and P. J. Tsai, Ca2+ signaling in cytoskeletal reorganization, cell migration, and cancer metastasis, Biomed Res Int, p.409245, 2015.

A. Bhatt, I. Kaverina, C. Otey, and A. Huttenlocher, Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain, J Cell Sci, vol.115, pp.3415-3440, 2002.

C. Wei, X. Wang, M. Zheng, and H. Cheng, Calcium gradients underlying cell migration, Curr Opin Cell Biol, vol.24, issue.2, pp.254-61, 2012.

F. C. Tsai, A. Seki, H. W. Yang, A. Hayer, S. Carrasco et al., A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration, Nat Cell Biol, vol.16, issue.2, pp.133-177, 2014.

F. C. Tsai and T. Meyer, Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells, Curr Biol, vol.22, issue.9, pp.837-879, 2012.

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, Regulation of cell movement is mediated by stretch-activated calcium channels, Nature, vol.400, issue.6742, pp.382-388, 1999.

S. Tang, X. Wang, Q. Shen, X. Yang, C. Yu et al., )(+) uniporter is critical for store-operated Ca(2)(+) entry-dependent breast cancer cell migration, Biochem Biophys Res Commun, vol.458, issue.2, pp.186-93, 2015.

S. Linder, C. Wiesner, and M. Himmel, Degrading devices: invadosomes in proteolytic cell invasion, Annu Rev Cell Dev Biol, vol.27, pp.185-211, 2011.

D. A. Murphy and S. A. Courtneidge, The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function, Nat Rev Mol Cell Biol, vol.12, issue.7, pp.413-439, 2011.

C. C. Mader, M. Oser, M. A. Magalhaes, J. J. Bravo-cordero, J. Condeelis et al., An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion, Cancer Res, vol.71, issue.5, pp.1730-1771, 2011.

Y. R. Pan, C. L. Chen, and H. C. Chen, FAK is required for the assembly of podosome rosettes, J Cell Biol, vol.195, issue.1, pp.113-142, 2011.

H. Yamaguchi, S. Yoshida, E. Muroi, N. Yoshida, M. Kawamura et al., Phosphoinositide 3-kinase signaling pathway mediated by p110alpha regulates invadopodia formation, J Cell Biol, vol.193, issue.7, pp.1275-88, 2011.

Y. Kato, S. Ozawa, M. Tsukuda, E. Kubota, K. Miyazaki et al., Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma, FEBS J, vol.274, issue.12, pp.3171-83, 2007.

M. Monet, D. Gkika, V. Lehen'kyi, A. Pourtier, F. Vanden-abeele et al., Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation, Biochim Biophys Acta, vol.1793, issue.3, pp.528-567, 2009.

Y. Okamoto, T. Ohkubo, T. Ikebe, and J. Yamazaki, Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines, Int J Oncol, vol.40, issue.5, pp.1431-1471, 2012.

G. Busco, R. A. Cardone, M. R. Greco, A. Bellizzi, M. Colella et al.,

V. Dell'aquila, A. Casavola, S. J. Paradiso, and . Reshkin, NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space, FASEB J, vol.24, issue.10, pp.3903-3918, 2010.

B. T. Beaty, V. P. Sharma, J. J. Bravo-cordero, M. A. Simpson, R. J. Eddy et al., Condeelis, beta1 integrin regulates Arg to promote invadopodial maturation and matrix degradation, Mol Biol Cell, vol.24, issue.11, pp.1-11, 2013.

M. L. Gallo, A. Poissonnier, P. Blanco, and P. Legembre, CD95/Fas, Non-Apoptotic Signaling Pathways, and Kinases, vol.8, p.1216, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618839

A. Fouque, E. Lepvrier, L. Debure, Y. Gouriou, M. Malleter et al., The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca(2+) flux from the endoplasmic reticulum to mitochondria, Cell Death Differ, vol.23, issue.10, pp.1702-1718, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381398

T. S. Soderstrom, S. D. Nyberg, and J. E. Eriksson, CD95 capping is ROCK-dependent and dispensable for apoptosis, J Cell Sci, vol.118, pp.2211-2234, 2005.

S. Latour, I. Mahouche, F. Cherrier, L. Azzi-martin, V. Velasco et al., Calcium Independent Effect of Orai1 and STIM1 in Non-Hodgkin B Cell Lymphoma Dissemination, Cancers (Basel), vol.10, issue.11, 2018.

A. V. Shinde, R. K. Motiani, X. Zhang, I. F. Abdullaev, A. P. Adam et al., STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry, Sci Signal, vol.6, issue.267, p.18, 2013.

J. A. Stolwijk, X. Zhang, M. Gueguinou, W. Zhang, K. Matrougui et al., Calcium Signaling Is Dispensable for Receptor Regulation of Endothelial Barrier Function, J Biol Chem, vol.291, issue.44, pp.22894-22912, 2016.

C. Frantz, A. Karydis, P. Nalbant, K. M. Hahn, and D. L. Barber, Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells, J Cell Biol, vol.179, issue.3, pp.403-413, 2007.

L. K. Putney, S. P. Denker, and D. L. Barber, The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions, Annu Rev Pharmacol Toxicol, vol.42, pp.527-52, 2002.

C. Frantz, G. Barreiro, L. Dominguez, X. Chen, R. Eddy et al.,

D. L. Jacobson and . Barber, Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding, J Cell Biol, vol.183, issue.5, pp.865-79, 2008.

N. Tania, J. Condeelis, and L. , Edelstein-Keshet, Modeling the synergy of cofilin and Arp2/3 in lamellipodial protrusive activity, Biophys J, vol.105, issue.9, pp.1946-55, 2013.

M. Oser, H. Yamaguchi, C. C. Mader, J. J. Bravo-cordero, M. Arias et al., Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation, J Cell Biol, vol.186, issue.4, pp.571-87, 2009.

M. A. Magalhaes, D. R. Larson, C. C. Mader, J. J. Bravo-cordero, H. Gil-henn et al., Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway, J Cell Biol, vol.195, issue.5, pp.903-923, 2011.

G. Mouneimne, L. Soon, V. Desmarais, M. Sidani, X. Song et al., Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation, J Cell Biol, vol.166, issue.5, pp.697-708, 2004.

S. Parlato, A. M. Giammarioli, M. Logozzi, F. Lozupone, P. Matarrese et al., CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway, Embo J, vol.19, issue.19, pp.5123-5157, 2000.

E. J. Steller, L. Ritsma, D. A. Raats, F. J. Hoogwater, B. L. Emmink et al., The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion, EMBO Rep, vol.12, issue.9, pp.931-938, 2011.

R. Reinehr, A. Sommerfeld, and D. Haussinger, CD95 ligand is a proliferative and antiapoptotic signal in quiescent hepatic stellate cells, Gastroenterology, vol.134, issue.5, pp.1494-506, 2008.

G. T. Motz, S. P. Santoro, L. P. Wang, T. Garrabrant, R. R. Lastra et al., Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors, Nat Med, 2014.

A. Poissonnier, J. P. Guegan, H. T. Nguyen, D. Best, N. Levoin et al., Disrupting the CD95-PLCgamma1 interaction prevents Th17-driven inflammation, Nat Chem Biol, vol.14, issue.12, pp.1079-1089, 2018.

L. Gao, G. S. Gulculer, L. Golbach, H. Block, A. Zarbock et al., Endothelial cellderived CD95 ligand serves as a chemokine in induction of neutrophil slow rolling and adhesion, Elife, vol.5, 2016.

S. Ganesh, C. F. Sier, G. Griffioen, H. J. Vloedgraven, A. Boer et al., Prognostic relevance of plasminogen activators and their inhibitors in colorectal cancer, Cancer Res, vol.54, issue.15, pp.4065-71, 1994.

A. Jeanes, C. J. Gottardi, and A. S. Yap, Cadherins and cancer: how does cadherin dysfunction promote tumor progression?, Oncogene, vol.27, issue.55, pp.6920-6929, 2008.

L. Gagnoux-palacios, H. Awina, S. Audebert, A. Rossin, M. Mondin et al., Cell polarity and adherens junction formation inhibit epithelial Fas cell death receptor signaling, J Cell Biol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02143636

A. Algeciras-schimnich, E. M. Pietras, B. C. Barnhart, P. Legembre, S. Vijayan et al., Two CD95 tumor classes with different sensitivities to antitumor drugs, Proc Natl Acad Sci U S A, vol.100, issue.20, pp.11445-50, 2003.

C. M. Henry and S. J. Martin, Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation, Mol Cell, vol.65, issue.4, pp.715-729, 2017.

S. P. Cullen, C. M. Henry, C. J. Kearney, S. E. Logue, M. Feoktistova et al., Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells, Mol Cell, vol.49, issue.6, pp.1034-1082, 2013.

S. Cursi, A. Rufini, V. Stagni, I. Condo, V. Matafora et al., Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression, EMBO J, vol.25, issue.9, pp.1895-905, 2006.

J. Senft, B. Helfer, and S. M. Frisch, Caspase-8 interacts with the p85 subunit of phosphatidylinositol 3-kinase to regulate cell adhesion and motility, Cancer Res, vol.67, issue.24, pp.11505-11514, 2007.

I. R. Powley, M. A. Hughes, K. Cain, and M. Macfarlane, Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex, Oncogene, vol.35, issue.43, pp.5629-5640, 2016.

A. Trauzold, C. Roder, B. Sipos, K. Karsten, A. Arlt et al., CD95 and TRAF2 promote invasiveness of pancreatic cancer cells, FASEB J, vol.19, issue.6, pp.620-622, 2005.

M. D. Brooks, M. L. Burness, and M. S. Wicha, Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer, Cell Stem Cell, vol.17, issue.3, pp.260-71, 2015.

P. C. Hermann, S. L. Huber, T. Herrler, A. Aicher, J. W. Ellwart et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer, Cell Stem Cell, vol.1, issue.3, pp.313-336, 2007.

R. Pang, W. L. Law, A. C. Chu, J. T. Poon, C. S. Lam et al., A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer, Cell Stem Cell, vol.6, issue.6, pp.603-618, 2010.

J. E. Visvader and G. J. Lindeman, Cancer stem cells: current status and evolving complexities, Cell Stem Cell, vol.10, issue.6, pp.717-728, 2012.

I. Pastushenko and C. Blanpain, EMT Transition States during Tumor Progression and Metastasis, Trends Cell Biol, vol.29, issue.3, pp.212-226, 2019.

I. Pastushenko, A. Brisebarre, A. Sifrim, M. Fioramonti, T. Revenco et al.,

P. A. Voet, C. Sotiropoulou, and . Blanpain, Identification of the tumour transition states occurring during EMT, Nature, vol.556, issue.7702, pp.463-468, 2018.

S. Liu, Y. Cong, D. Wang, Y. Sun, L. Deng et al.,

M. D. Mcdermott, S. Landis, A. Hong, R. Adams, C. Angelo et al., Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts, Stem Cell Reports, vol.2, issue.1, pp.78-91, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01431931

M. A. Nieto, R. Y. Huang, R. A. Jackson, J. P. Thiery, and E. , Cell, vol.166, issue.1, pp.21-45, 2016.

S. A. Mani, W. Guo, M. J. Liao, E. N. Eaton, A. Ayyanan et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, vol.133, issue.4, pp.704-719, 2008.

A. P. Morel, M. Lievre, C. Thomas, G. Hinkal, S. Ansieau et al., Generation of breast cancer stem cells through epithelial-mesenchymal transition, PLoS One, vol.3, issue.8, p.2888, 2008.

X. Zheng, J. L. Carstens, J. Kim, M. Scheible, J. Kaye et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, vol.527, issue.7579, pp.525-530, 2015.

E. Beerling, D. Seinstra, E. Wit, L. Kester, D. Van-der-velden et al., Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity, Cell reports, vol.14, issue.10, pp.2281-2289, 2016.

S. Paget, The distribution of secondary growths in cancer of the breast, Cancer Metastasis Rev, vol.1889, issue.2, pp.98-101, 1989.

D. I. Gabrilovich, S. Ostrand-rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours, Nat Rev Immunol, vol.12, issue.4, pp.253-68, 2012.

M. Ouzounova, E. Lee, R. Piranlioglu, A. E. Andaloussi, R. Kolhe et al.,

I. Marasco, A. Asm, K. A. Chadli, M. Hassan, G. Thangaraju et al., Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade, Nature communications, vol.8, p.14979, 2017.

Z. Castano, B. P. Juan, A. Spiegel, A. Pant, M. J. Decristo et al., IL-1beta inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization, Nat Cell Biol, vol.20, issue.9, pp.1084-1097, 2018.

S. K. Wculek and I. Malanchi, Neutrophils support lung colonization of metastasis-initiating breast cancer cells, Nature, vol.528, issue.7582, pp.413-420, 2015.

S. Peyvandi, S. Buart, B. Samah, M. Vetizou, Y. Zhang et al., Fas Ligand Deficiency Impairs Tumor Immunity by Promoting an Accumulation of Monocytic Myeloid-Derived Suppressor Cells, Cancer Res, vol.75, issue.20, pp.4292-301, 2015.

J. Zhu, C. G. Powis-de-tenbossche, S. Cane, D. Colau, N. Van-baren et al., Van den Eynde, Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes, Nature communications, vol.8, issue.1, p.1404, 2017.

P. Ceppi, A. Hadji, F. J. Kohlhapp, A. Pattanayak, A. Hau et al., CD95 and CD95L promote and protect cancer stem cells, Nature communications, vol.5, p.5238, 2014.

T. Ducret, C. Vandebrouck, M. L. Cao, J. Lebacq, and P. Gailly, Functional role of storeoperated and stretch-activated channels in murine adult skeletal muscle fibres, J Physiol, vol.575, pp.913-937, 2006.

Y. W. Huang, S. J. Chang, H. I. Harn, H. T. Huang, H. H. Lin et al., Mechanosensitive store-operated calcium entry regulates the formation of cell polarity, J Cell Physiol, vol.230, issue.9, pp.2086-97, 2015.

I. Jardin, J. J. Lopez, G. M. Salido, and J. A. Rosado, Store-Operated Ca(2+) Entry in Breast Cancer Cells: Remodeling and Functional Role, International journal of molecular sciences, vol.19, issue.12, 2018.

R. A. Black, C. T. Rauch, C. J. Kozlosky, J. J. Peschon, J. L. Slack et al., A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells, Nature, vol.385, issue.6618, pp.729-762, 1997.

M. L. Moss, S. L. Jin, M. E. Milla, D. M. Bickett, W. Burkhart et al., Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha, Nature, vol.385, issue.6618, pp.733-739, 1997.

E. Batlle and H. Clevers, Cancer stem cells revisited, Nat Med, vol.23, issue.10, pp.1124-1134, 2017.